
PhD Thesis

Inter-Organisational Intrusion Detection

System Communication to implement

Network Defence

Michael Pilgermann

A submission presented in partial fulfilment of the

requirements of the University of Glamorgan / Prifysgol Morgannwg

for the degree of Doctor of Philosophy

August 2006

Supervised by Andrew Blyth and Gaius Mulley

Certificate of Research

This is to certify that, except where specific reference is made, the work described in this
thesis is the result of the candidate. Neither this thesis, nor any part of it, has been presented,
or is currently submitted, in candidature for any degree at any other University.

Candidate:

Director of Studies:

Date:

iii

Abstract

Intrusion Detection System (IDS) technology has increasingly been deployed in recent com-
puter networks as part of the security measures in order to combat the ever increasing number
of threats, inter-connected computers are facing these days. One of the major improvements
that have been applied to these intrusion detection systems, is the introduction of distribu-
tion features, allowing the components to exchange and correlate audit data and, this way,
act as units instead of isolated solutions.

This PhD thesis describes a novel concept called Inter-Organisational Intrusion Detection
System (IOIDS) technology, which pushes the idea of distributing audit data from intrusion
detection system to a new level. By introducing trust relationships between parties and
mapping them into the system, IOIDS provides a way to exchange IDS audit data across
organisational boundaries. Thereby, commercial confidentiality can be maintained by em-
ploying state-of-the-art security technologies and strict distribution of all features.

The analysis of the results for this project proves that an implementation of communication
channels for IDS audit data between organisations is possible. The integration of ids audit
data from machines located at different geographical sides results in a clear distribution
towards nowadays security situation. The time consuming process of manual exchange of
this kind of information, as currently performed, can be tightened significantly by automating
this process.

iv

Acknowledgements

First of all, I thank my director of studies, Dr. Andrew Blyth, for his great supervision
and support throughout the entire project time of my PhD. He has not only guided me
through the process in a very helpful manner, consulted me in technical questions and been
an exceptional partner for many project discussions, but has also been a contact person for
any concern around the research.

A number of persons have supported me with my project, often in form of numerous
discussions or any other kind of help. Just to name a few from this list I had liked to
thank Stilianos Vidalis, Vivienne Mee, Evangelis Morakis, Konstantinos Xynos and Jonathan
Corcoran. In the end has the entire Information Security Research Group of the School of
Computing provided a supportive and friendly atmosphere for carrying out my research.

How could one finish a PhD thesis without being backed up by their family and friends?
I thank my mother, Christine Pilgermann, my brothers, the rest of the family and many
friends here in Cardiff and back home in Germany for supporting me mentally, cheering me
up and just always being there for me whenever I needed them.

v

Contents

1. Introduction 1

1.1. Hypothesis . 1
1.2. Contribution to Science . 2
1.3. Structure . 2

2. State of the Art 4

2.1. Introduction . 4
2.2. Security in General . 5
2.3. Intrusion Detection - one technology in Information Security 5

2.3.1. Types of Intrusion Detection Systems 6
2.3.2. Detection technologies . 7

2.4. Distributed Intrusion Detection . 8
2.4.1. Initial projects . 9
2.4.2. Large-Scale approaches . 9
2.4.3. Agents, graphs and neural networks 10
2.4.4. Current approaches . 11
2.4.5. Distributed Intrusion Detection and Grid Systems 14

2.5. Secure the information channel . 14
2.5.1. Public Key Infrastructure (PKI) . 14
2.5.2. Transport Layer Security (TLS) . 15
2.5.3. Access Control - Protection of information 16

2.6. Define the way of speaking - Message Exchange Formats 18
2.6.1. Extensible Markup Language (XML) - Structure data 18
2.6.2. Exchange formats for computer incidents 20
2.6.3. Establish connection . 24

2.7. Grid Technology . 25
2.7.1. History and evolution . 26
2.7.2. Integration with Web-Services . 28

2.8. Data persistence . 29

vi

Contents

2.8.1. Databases . 30

2.9. Conclusion . 33

3. Objectives and Terminology 34

3.1. Introduction . 34

3.2. Deployment Scenarios . 34

3.2.1. IOIDS in Supplier-Consumer chains 35

3.2.2. Sharing of security related information between academic institutions 36

3.2.3. Open communities for private end user protection 37

3.3. Objectives . 38

3.3.1. Knowledge Grid in General . 38

3.3.2. Objectives in common with traditional GRID technology 39

3.3.3. Objectives not adopted from traditional GRID technology 39

3.3.4. Objectives in particular for distributed Intrusion Detection Systems . 40

3.4. Terminology . 43

3.4.1. Knowledge Services . 45

3.4.2. Trusting Communities . 46

3.4.3. Members (M) . 46

3.4.4. Service Authority (SA) . 47

3.4.5. Community Authority (CA) . 48

3.4.6. Trusting Community Gateways (TCGW) 49

3.5. Conclusion . 49

4. Experiment Definition 50

4.1. Introduction . 50

4.2. Overview . 50

4.2.1. Problem in IT security context . 52

4.2.2. Shortcomings of available solutions . 53

4.2.3. Potential for enhancements . 54

4.2.4. Experiment relevance . 55

4.3. Comparison . 55

4.3.1. Representatives . 56

4.3.2. Overview of desired features . 60

4.4. Execution: Design, Architecture and Implementation 67

4.4.1. Subjacent Communication Platform 69

4.4.2. Event Exchange Mechanism . 71

vii

Contents

4.4.3. Data integration from third party event generators 72

4.5. Analysis and Evaluation . 74

4.5.1. Comparison of approaches . 74

4.5.2. Experiment . 75

4.6. Conclusion . 85

5. Grid For Digital Security (G4DS) 86

5.1. Introduction . 86

5.2. Architecture . 86

5.2.1. Overview . 87

5.2.2. Database layout . 88

5.2.3. Descriptions . 92

5.2.4. Access Control . 94

5.3. Implementation . 98

5.3.1. Managers and Database Connectors 98

5.3.2. Message transmission . 101

5.3.3. Controlling G4DS . 107

5.3.4. Access Control Implementation . 114

5.3.5. G4DS and Communities . 118

5.3.6. Service Integration . 121

5.3.7. Message identification and job implementation 124

5.3.8. Logging Facilities . 126

5.3.9. Modularity and Extensibility . 127

5.4. Conclusion . 130

6. Inter-Organisational Intrusion Detection System (IOIDS) 131

6.1. Introduction . 131

6.2. Design . 131

6.2.1. Overview of design . 132

6.2.2. Flow of data . 133

6.2.3. Database backend . 137

6.2.4. Message Formats . 147

6.2.5. Security Policy . 153

6.3. Technical design and implementation . 163

6.3.1. IOIDS as a service - Integration with G4DS 163

6.3.2. Dataengine - process information and react appropriately 165

viii

Contents

6.3.3. Access Control . 173
6.3.4. Internal Datastructure . 176
6.3.5. IOIDS logging facilities . 179

6.4. Conclusion . 181

7. Experiment and Analysis 182

7.1. Introduction . 182
7.2. Comparison of features . 182

7.2.1. Results per representative . 183
7.2.2. Overview results and analysis . 196

7.3. Practical experiments . 199
7.3.1. Stage 1 - G4DS . 199
7.3.2. Stage 2 - IOIDS . 211
7.3.3. Stage 3 - IOIDS data integration - Preparation 223
7.3.4. Stage 3 - IOIDS data integration - Execution 231

7.4. Evaluation of results and overall analysis . 243
7.5. Conclusion . 244

8. Conclusions 246

8.1. Achievements . 246
8.1.1. Contribution to Science . 248

8.2. IOIDS in information security . 249
8.3. Limitations and future work . 249

A. References 251

B. Details for experiment execution 262

B.1. Execution Protocols . 263
B.1.1. Stage 1 . 263
B.1.2. Stage 2 . 272
B.1.3. Stage 3 . 281

B.2. More G4DS resources . 296
B.3. More IOIDS resources . 313
B.4. Other figures and listings . 316

ix

List of Figures

2.1. Evolution of Intrusion Detection Technology 12

3.1. Supply Chain Scenario . 35
3.2. Inter Organisation IDS in communities . 36
3.3. High level description of overall architecture 44

4.1. High level description of overall architecture 68
4.2. Proposed network topology for experiment - stage I 76

5.1. G4DS Base Layout . 87
5.2. G4DS Database Layout . 89
5.3. Two stages access control . 96
5.4. Managers and their DB Connectivity . 98
5.5. Controller for Protocols . 128

6.1. Overview of IOIDS architecture . 132
6.2. IOIDS component interaction for triggering new IOIDS message 134
6.3. IOIDS component interaction for receiving new IOIDS message 136
6.4. SoapSy IOIDS Extension DB Schema . 142
6.5. IOIDS Knowledge Management . 155

7.1. Setup of laboratory environment . 200
7.2. Prelude deployment scenario (src: ThePreludeTeam (2006)) 226
7.3. SnortNet deployment scenario (src: Fyodor (2000)) 227
7.4. AirCert Peer Topology (Src: Trammell et al. (2005)) 229
7.5. Overview of components and databases on laboratory machines 231
7.6. Prelude analysis console PreWikka event output 233
7.7. Prelude analysis console PreWikka event output 234

B.1. Nessus configuration . 316
B.2. Nessus during execution . 317

x

List of Figures

B.3. Nessus results . 317
B.4. Prelude analysis console PreWikka detailed event information 318

xi

List of Tables

7.1. Feature comparison: Results category Intrusion Detection 196
7.2. Feature comparison: Results category Distribution 197
7.3. Feature comparison: Results category Security and Availability 198
7.4. Feature comparison: Results category Extensibility 198
7.5. Parameters for G4DS databases . 201
7.6. Parameters for G4DS nodes . 201
7.7. Parameters for G4DS communities . 202
7.8. Elapsed time for event travelling in IOIDS / G4DS 221
7.9. Packet size within the different network layers 221
7.10. Time elapsing for event distribution . 240
7.11. Maximum number of processable events . 240
7.12. Packet size implications of approaches . 240

B.1. IOIDS DataEngine Distribution and Trustees 274
B.2. Prelude components deployed for Experiment 283
B.3. Start and Stop times for Experiment Execution 3-001/002 288
B.4. Start and Stop times for Experiment Execution 3-003 290
B.5. Sources of Events for Experiment Stage 3-004 292
B.6. Start and Stop times for Experiment Execution 3-004 293
B.7. Specifications for laboratory environment A 296
B.8. Specifications for laboratory environment B 299

xii

Listings

5.1. Simple example for Access Control Policy . 96
5.2. XML Message Wrapping . 101
5.3. XML Message Wrapping using CDATA sections 102
5.4. XML Message Wrapping using CDATA sections and hex encoding 102
5.5. Interactive menu for G4DS maintain environment 113
5.6. Sample role definition . 116
5.7. Sample rule definition . 116
5.8. AND crossing for elements of policy rules . 117
5.9. Connect with Application against G4DS . 123
5.10. Background Processing and Job Locking . 125
5.11. Example of continuation for a job . 125
5.12. Example for generating log information . 127
6.1. Structure of IOIDS information update request message 148
6.2. Format of an IOIDS information request query condition 150
6.3. Structure of example of an IOIDS information request query condition 151
6.4. Structure of IOIDS knowledge request reply message 152
6.5. Structure of extract of IOIDS data engine policy 167
6.6. Example for data structure within IOIDS . 176
6.7. Internal representation of IOIDS events . 177
6.8. Transformation to IOIDS XML from internal data structure 179
7.1. Output of chat application on node M001 . 203
7.2. Partial G4DS logging output on node M001 for experiment stage 1 step 001 . 204
7.3. Partial G4DS logging output on node M002 for experiment stage 1 step 002a 205
7.4. Partial G4DS logging output on node M003 for experiment stage 1 step 002c 205
7.5. Partial G4DS logging output on node M001 for experiment stage 1 step 003b 207
7.6. Additional rule for Access Control on node M001 to block application data

from M003 . 207
7.7. Additional rule for Access Control on node M001 to block application data

from M003 . 209

xiii

Listings

7.8. Partial IOIDS log on M001 for sending and receiving one message 213
7.9. Partial IOIDS logging information on node M002 215
7.10. Partial IOIDS log on M001 for passing on one remote event 216
7.11. Console output for SoapClient on node M004 for inserting similar messages . 218
B.1. Manual adjustment of g4ds database . 265
B.2. Call of Ethereal network sniffer . 269
B.3. Commands for G4DS denial of service . 270
B.4. New rule for IOIDS Data Engine Policy on node M001 278
B.5. Shell script for generating load on local SoapSy database 281
B.6. Start ethereal for capturing G4DS traffic . 281
B.7. Enable Snort to log into certain output facilities 283
B.8. Command to start Pathogen (AirCERT module) 285
B.9. ShellScript for generating network traffic on certain TCP ports 289
B.10.New rule for IOIDS data engine to pass on events with low protection level . 292
B.11.Snort rule for triggering a single event for incoming UDP packet 295
B.12.Call of netcat to trigger new Snort rule . 295
B.13.SQL Script for Creating G4DS relations . 296
B.14.Installation instructions for G4DS . 300
B.15.Output for G4DS Installation on M004 . 302
B.16.Community Description for C001 . 303
B.17.Python program for chat test service . 305
B.18.Service Description for Test-Chat service . 307
B.19.G4DS logging outupt on node M001 for experiment stage 1 step 001b 308
B.20.Python program for changing member id inside message 310
B.21.Installation instructions for IOIDS . 314

xiv

Chapter 1.

Introduction

In recent decades the evolution of the Internet has been marked by steady, rapid growth.
Corporations started to provide internet accessible services and more and more workstations
have been connected to the Internet. Soon, a corresponding increase of attacks against
networks has been realised. (Cert/CC (2004)) For the protection of networks besides other
security mechanisms such as Firewalls and Anti-Virus software, Intrusion Detection Systems
(IDS) technology has been deployed in order to identify attacks in a contemporary way and
enable security staff to react in a prompt and adequate manner.

For today’s deployments, however, data captured at several locations in commercials, uni-
versities and governmental institutions has only been correlated inside these organisations.
Consequently, each corporation acts in an isolated way and has to be attacked itself or the
knowledge has to be updated manually in order to become aware of a new security thread.

The purpose of the Inter-Organisational Intrusion Detection System (IOIDS) infrastruc-
ture has been the research of opportunities and technologies for establishing a secure and
trustworthy communication channel between organisations for automatic querying, valida-
tion and integration of security relevant information from disparate organisational Intrusion
Detection Systems located at different geographical sides.

1.1. Hypothesis

Intrusion Detection Systems located in separate organisations can be made to communi-
cate and share information via a XML based peer-to-peer architecture in a secure and non-
reputable manner, while maintaining commercial confidentiality, allowing the network to
react as a single entity to a computer network attack (CNA).

1

Chapter 1. Introduction 2

1.2. Contribution to Science

The Inter-Organisational Intrusion Detection System infrastructure describes a novel ap-
proach for information sharing across organisational boundaries by establishing trust rela-
tionships between parties and base sharing and integration decisions on those ones. This way,
it clearly puts a number of features on top of existing approaches, which mainly focus on the
structuring, normalisation and generalisation of available audit data.

With IOIDS a communication platform has been designed and evaluated, which exchanges
knowledge in a reliable and secure manner by utilising state-of-the-art technology for grid
systems, public key infrastructures and peer-to-peer technology. Standards for information
exchange in the intrusion detection system context have been researched and an XML based
communication application has been put into place. The introduction of policy based access
control mechanisms allows the local node to protect its information and share it only with
desired parties.

The idea of Inter-Organisational Intrusion Detection has been acknowledged by the aca-
demic society as a novelty, which is expressed by the number of documents published around
the topic as part of the project. (see section 8.1.1 for details)

1.3. Structure

The rest of the thesis is structured the following way:

Chapter 2 provides an overview about the state of the art intrusion detection systems
and their subcategory distributed intrusion detection system technology. Besides this core
technology, other related approaches such as grid technology, message exchange formats and
security related topics, which are also important for the project, are briefly discussed. An
introduction to information security in general puts the whole project in its overall context.

Chapter 3 draws attention to background information for the project and, this way, presents
some potential practical deployment scenarios for the projects as well as defines the objectives
for the project on a high and abstract level. Last but not least, a terminology section
introduces a common set of vocabulary to be used for the remaining chapters of the thesis.

Following that, the thesis lays down the borders for the project and, in this way, describes
the scope of the research for this thesis. Within chapter 4, firstly, an overview is given about
shortcomings of current available approaches for distributed intrusion detection. Afterwards,
the experiment for IOIDS is described in three parts, namely the theoretical comparison
of features by evaluation of available documentation for similar approaches, a high-level
overview about the design of the proof-of-concept architecture and, last but not least, the

Chapter 1. Introduction 3

detailed definition of the analysis process, which is able to evaluate the project outcome.
Chapters 5 and 6 provide the technical details for the experiment; detailing the information

about the design and implementation of the IOIDS application. As the Inter-Organisational
Intrusion Detection System is coming in two major components, namely the subjacent com-
munication platform Grid for Digital Security (G4DS) and the actual Inter-Organisational
Intrusion Detection System application IOIDS, each of them is being addressed by a single
chapter. Each of the two chapters has been divided into the two parts: Design and imple-
mentation; the former one addressing a more general kind of information for the component
in question, the latter one drawing attention to implementation details. Interaction between
the two components has been addressed in detail as part of the IOIDS explanations in section
6.3.1.

Following the technical information about the architecture of the components the project
evaluation is discussed in detail in chapter 7. As laid down in the experiment definition
beforehand in chapter 4, the analysis is carried out in two parts; namely a feature comparison
of IOIDS with other approaches in the DIDS context and a practical experiment part carried
out in a laboratory environment in order to compare features of the Inter-Organisational
Intrusion Detection System with the ones of similar or related approaches. Results from both
parts are compiled and a structured overview of the outcomes mirrors the IOIDS features
against the predefined objectives for the project.

The last chapter in the thesis brings together the information from all parts of the thesis and
puts the outcome of the project back into the broader context. Apart from an overview of the
achieved results clear statements are presented, giving information about the contributions to
science, the IOIDS project could make. Last but not least, a list has been assembled, which
shows opportunities for taking the outcome of this project further for future developments.

Chapter 2.

State of the Art

2.1. Introduction

In the beginning for the IOIDS project, background information had to be researched and
state of the art related fields and technologies had to be examined. Besides the core technology
of intrusion detection, there were also some other technologies to be addressed as the project
was gaining outcome from them.

Consequently, this chapter is addressing the following issues in the order given by this list:

• An introduction to security in information technology places intrusion detection system
technology into its context.

• An overview about intrusion detection systems provides information about the concepts
of IDS in general.

• Another section focuses solely on distribution features for intrusion detection systems
technology and presents its evolution by providing an exhaustive list within this research
area.

• Section 2.4.5 stresses state of the art technologies available for establishing secured
connections between parties.

• An overview is provided about the standards available for exchanging security related
information in a structured manner.

• As the project benefits from research outcomes from grid technology, an overview about
the history and state of the art for this technology is provided as well.

• An introduction into data persistence explains briefly the differences in current available
database technologies.

4

Chapter 2. State of the Art 5

2.2. Security in General

Since organisations have become increasingly aware of the importance of their network infras-
tructures, as well as the threats faced by them a lot of money, time and effort have been put
on the development of strategies, guidelines, programs and sensitisation processes to protect
this sensitive and important bit of the organisation’s assets. The most popular ones may be
categorised as follows:

• Development of overall security concepts, addressing all possible threats as well as all
components to be protected for organisations

• Threat assessment in order to assemble a priority list for correct facing the threat
problem

• Systematic penetration testing in order to check the effectiveness of the aforementioned
security concepts

• Development of guidelines for sensitisation of users for the threat of information viola-
tion (including for example the adequate choice of passwords and a protected location
for their storage)

• Centralisation and standardisation of the network management

• Development of projects in a technical manner in order to facilitate aforementioned
organisational actions, which include:

– Anti Virus Software for the protection against viruses, worms and trojans

– Firewall systems at gateways between networks as well as personal firewalls on
local machines

– Intrusion Detection Systems with their sub-categories Distributed Intrusion De-
tection Systems and Intrusion Prevention Systems (IPS)

– Penetration testing tools such as port scanners or vulnerability detectors

2.3. Intrusion Detection - one technology in Information Security

Before drawing attention to Intrusion Detection the expression intrusion itself needs to be
defined: ”A Network Intrusion is any unwanted or unauthorised action being taken across the
network that affects remote resources.” (Heberlein et al. (1992)); or as described in (Crosbie

Chapter 2. State of the Art 6

and Spafford (1994)): ”An Intrusion is any set of actions that attempt to compromise the
integrity, confidentiality or availability of a resource.”

Examples of network intrusions are (Heberlein et al. (1992)):

• Unauthorised modifications of system files that permit unauthorised access to either
system or user information

• Unauthorised access to user file space

• Unauthorised modifications of user files / information

• Unauthorised modifications of tables or other system information in network compo-
nents

• Unauthorised use of computing resources (perhaps through the creation of unauthorised
accounts or through the unauthorised use of existing accounts)

Intrusion Detection instead may be described the following way: ”Intrusion Detection
is defined to be the problem of identifying individuals [or threat agents] that are using a
computer system without authorisation (i.e. crackers) and those who have legitimate access
to the system but are exceeding their privileges (i.e. insider threat).” (Balasubramaniyan
et al. (1998); Mukherjee et al. (1994); Snapp et al. (1991a))

The fundamental idea of Intrusion Detection was invented by Anderson with his technical
report in 1980 (Anderson (1980)). In the early years of this technology Intrusion Detection
was limited to network intrusion detection. The first occurrence of a grown up approach was
in 1987 with the well known paper of Denning, which is thought to be the foundation for
Intrusion Detection Systems (Denning (1987)).

Over the years, many changes have since been made in the area of Intrusion Detection
Systems with their sub-categories. The efficiency of these systems was challenged due to the
overwhelming amount of data they produced; more and more efforts have been put on the
developments in the areas of data correlation, data abstraction and data merging rather than
simply gathering as much information as possible (Morakis et al. (2003)).

2.3.1. Types of Intrusion Detection Systems

Early developments for intrusion detection system technology were simply based on network
intrusion detection only. Nowadays, intrusion detection covers a broader collection of tech-
nologies. The following classification is commonly used for grouping those ones (NSS (2002);
Pilgermann (2003)):

Chapter 2. State of the Art 7

Network Intrusion Detection (NIDS) – Most mature intrusion detection system technology.
Sensors capture network traffic and are responsible for observing an entire network
segment.

Host Intrusion Detection (HIDS) – Performs intrusion detection functionality on a single
host only, usually on nodes that require special protection such as central servers,
gateways or RAS Servers. It processes information from the host like system event
log data, file integrity or CPU and memory utilisation in order to identify malicious
activities.

Hybrid Intrusion Detection – This technology is also called Network Node Intrusion Detec-
tion and it integrates the two technologies NIDS and HIDS for a single node. Literally, it
means that a host intrusion detection system is extended by network intrusion detection
capabilities in order to enable it to identify a wide set of attack patterns.

Network Intrusion Prevention (NIPS)) – Network Intrusion Prevention Systems are look-
ing to overcome the drawback of Network Intrusion Detection System based on their
reactive nature. In contrast to NIDS these systems carry out their work in a proactive
manner: NIPS are usually deployed as in-line nodes on gateways between network seg-
ments in order to capture and evaluate traffic. Only if the traffic is declared as being
non-malicious the data is passed on to its final destination.

Host Intrusion Prevention (HIPS) – Similar to NIPS do Host Intrusion Prevention systems
carry out their work in a proactive manner on a single host. The most popular tech-
nology for this purpose is called System Call Interception, in which each system call on
the host in question is intercepted by the IPS and checked against a pre-defined policy
for this host.

2.3.2. Detection technologies

Furthermore, detection mechanisms were improved and this way, several approaches besides
the two original mechanisms, namely misuse detection and anomaly detection (Mukherjee
et al. (1994)) have been established, although some of them are just derived approaches.
Basically, we distinguish the following five detection methodologies (Pilgermann (2003); NSS
(2002)):

1. Pattern matching: Most popular and most mature detection methodology, which at-
tempts to detect malicious activities by searching for predefined patterns inside the
network traffic

Chapter 2. State of the Art 8

2. Stateful pattern matching: Extended version of pattern matching, which looks to over-
come the problems with fragmented attacks by tracing the network traffic and reassem-
bling fragmented pieces of network traffic

3. Protocol decoding: Reassembles the network traffic and, with the knowledge about
specifications of different network protocols, it is able to identify malicious behaviour
inside the traffic

4. Heuristic analysis: Utilises a kind of algorithmic logic, which the alarm decisions are
based on. Often statistical evaluations of a special traffic type are used for these algo-
rithms

5. Anomaly analysis: Instead of searching for malicious behaviour the normal behaviour
is being defined (using a learning phase or based on the setting of parameters) and
significant deviations from this behaviour are reported to be malicious behaviour

Each of these methodologies comes with advantages and disadvantages regarding the detec-
tion rate, false positive1 rate, processing time and management efforts; though it’s commonly
agreed that only an adequate combination of both leads to a satisfactory protection of the
infrastructure.

2.4. Distributed Intrusion Detection

Quite recently, a development in the area of Intrusion Detection technology may be recog-
nised, namely its extension by distribution features. With former approaches the roles of
the components in an Intrusion Detection topology were quite clearly separated the following
way:

• Gathering components (sensors): Gathering the data, possibly pre-processing of the
data into a format which can be processed by the processing component

• Processing component (detectors): Analysing and correlating of data received from
several sensors

• Analysing components (reporter): Alerting in different kinds of communication channels
(such as email, SMS, alert window) and post-processing the proceeded data for different
kinds of reports

1False positives are alerts, which are raised by mistake; hence, there has not occurred any incident beforehand.

Chapter 2. State of the Art 9

A major problem arising was the limited ability of the detectors to process the huge amount
of data in the ever-growing network infrastructures. (Snapp et al. (1991a))

Although with some systems, a number of the responsibilities are integrated within single
components and also some boundaries between them have become weaker, as for example
some sensors are performing some pre-processing of the collected data. Already, this separat-
ing has basically remained over the decades of Intrusion Detection technology development
and evolution.

2.4.1. Initial projects

Distributed Intrusion Detection can be traced back to the early nineties. Heberlein suggested
with his Network Security Monitor (NSM) an approach for observing a network segment. It
was said to be applicable for broadcasting local area networks and is based on the definition of
profiles of usage of network resources and the comparison with the current usage (Heberlein
et al. (1990); Snapp et al. (1991a)). One year later, the same research group extended this
approach by some distribution features and distinguished between the three components
central manager, host manager and LAN manager (Brentano et al. (1991); Snapp et al.
(1991b)). The expression central manager already betrayed it is employing a centralised
approach and therefore not really applicable for wide area networks since all the high level
events are reported to this single manager.

The early distributed Intrusion Detection Systems had one problem in common, namely the
difference between network topology and IDS topology. Hierarchies are not very likely to exist
in many networks (Balasubramaniyan et al. (1998); White et al. (1996)). Hence, an approach
in addition to the existing one with the centralised topology was introduced and developments
such as Cooperating Security Managers (White et al. (1996)) with their individual managers
were brought into existence, that forces them to coordinate intrusion detection activities
themselves. The replacement of the centralised instance is a significant improvement towards
the employment of intrusion detection technologies on large-scale networks.

2.4.2. Large-Scale approaches

The first occurrence of the expression peer-based in the context of Distributed Intrusion
Detection Systems was recognised in the ”Cooperating Security Managers” (White et al.
(1996)). Although this system shares the basic idea of totally equal managers with our
project, it is following a completely different way of distributed intrusion detection. Basically,
it was looking to improve the architecture named ”Distributed Intrusion Detection System”
(Snapp et al. (1991b)), which is tracing users through a specified network domain using

Chapter 2. State of the Art 10

a unique user identifier (namely the Network-user identification) for all sessions a user is
maintaining all over this domain (Brentano et al. (1991)). By examining and correlating both,
local logging data, such as login and logout information, and network traffic information, such
as telnet or rlogin connections, it claims to be able to track users on several machines even
when using different user names. The major improvement of the ”Cooperating Security
Managers” is the substitution of the identifier by maintaining a tail of visited hops for each
user. This functionality is said to enable administrators to trace the route of a user through
the entire observed network domain.

Another direction of extension was driven by Heberlein with his Internet Security Monitors
(ISM) (Heberlein et al. (1992)), which are also based on the Distributed Intrusion Detection
System (Snapp et al. (1991b)). It is furthermore utilising outcomes from an earlier of Heber-
lein’s projects, namely the Network Security Monitors (NSM) (Heberlein et al. (1991)). These
were initially designed to detect intrusive activity across a local-area network (LAN). By the
introduction of a technique called thumb printing with its ”extended connections” it is look-
ing to track users through wide area networks. The entire network is divided into several
domains and by introducing a hierarchical configuration with its sub domains, users are said
to be tracked over an entire wide area network such as the Internet.

2.4.3. Agents, graphs and neural networks

After these initial steps in the early nineties, research on distributed intrusion detection was
pushed further and some approaches were brought into being in the mid and late nineties
which are more or less all taking advantage of the outcomes of the aforementioned develop-
ments. In 1994, Crosbie et al published an approach whose basic improvement was said to be
the dividing of the well known monolithic IDS architecture into light weight components; in
particular a net of independent agents which may be added or removed to the overall system
dynamically. Agents can employ any of the three detection mechanisms: pattern matching;
rules based detection and use of genetic programming and are distributed both on a local
system and over the local network. Any of the agents may assign certain suspicious levels for
special actions and broadcast this to other agents. Basically, no single agent is able to raise
an alert, only in correlation with other agents and suspicious behaviour on their side, the
threshold can be achieved and alerts will be triggered. (Crosbie and Spafford (1994, 1995))

In 1996 another approach for distributed Intrusion Detection was introduced by Staniford-
Chen et al, namely ”GrIDS - A Graph based Intrusion Detection System for Large Networks”.
(Cheung et al. (1999); Staniford-Chen et al. (1996)) GrIDS uses a hierarchical reduction
scheme for the graph construction (Staniford-Chen et al. (1996)); and this way the authors

Chapter 2. State of the Art 11

claim the applicability for networks with up to several thousand hosts. The network topology
is divided into several domains; each host within them is represented by a node of the graph.
In the higher level graph this domain will be represented by a single node on itself. Edges
in the graphs are giving information about traffic between the nodes. By definition of suspi-
cious traffic profiles beforehand and capturing the current network traffic in conjunction with
matching between both of them malicious behaviour such as worms is said to be detectable.

In the late nineties two new approaches for distributed Intrusion Detection were introduced.
Both of them make use of the expression agent for suggesting the independence and autonomy
of these modules. Balasubramaniyan assembles his autonomous agents in a hierarchical
system in order to generalise and pre-process the data in each of the layers; thus reducing the
amount of data reported to the parent node (AAFID) (Balasubramaniyan et al. (1998)). An
AAFID system consists of several entities; each of them is type of either agent or transceiver
or monitor. Every host may contain several agents but only one transceiver, which controls
the agents and to whom all findings are reported. Data is pre-processed and passed to one
or several monitors. Monitors may be organised in a hierarchical fashion such that a monitor
may in turn report to a higher-level monitor. (Balasubramaniyan et al. (1998)) However, due
to the control role of the monitors these single points of failure are a significant drawback.
Barrus et al. are also making use of autonomous agents, which are deployed inside one
network domain and which are all basically reporting to the same data collector. The novel
idea behind this approach is the employment of a hierarchical scheme of escalating levels of
alertness. As several times before the users are tracked through the network using a common
network identifier and the two values: Danger and transferability, which are thought to be
essential in this approach for the alert levels. They are evaluated and challenged against a
threshold using a Neural Network. (Barrus and Rowe (1998))

2.4.4. Current approaches

Further research and studies (Vandoorselaere et al. (2004)) in this area are drawing the
attention to the problem of leaking of dynamics with traditional Intrusion Detection. Or-
ganisational structures in organisations are specific and individual and should be able to be
addressed by the topology of the information security infrastructure. With the introduction
of so called Enterprise Intrusion Detection Systems (EIDS), a recent development in Dis-
tributed Intrusion Detection, these issues could be addressed, and, for example, hierarchical
configurations of the processing components became possible. (Danyliw et al. (2003); Fyodor
(2000); Vandoorselaere et al. (2004))

Figure 2.1 compares the traditional approach with the one of Enterprise Intrusion Detection

Chapter 2. State of the Art 12

Figure 2.1.: Evolution of Intrusion Detection Technology

and outlines the differences in configuration of the components and the flow of information.

SnortNet

SnortNet (Fyodor (2000)) is an extension to the well-known open-source network intrusion
detection system Snort, whose development was started in the late 90s. Snort comes with
a number of facilities to integrate modules in the form of preprocessors and output plugins.
The latter has also been used by the SnortNet extension in order to add distribution features
to the approach.

SnortNet was started only 2 years after the initial attempts of Snort itself and has since
been discontinued. It was an attempt to add distribution features to Snort by introducing
an architecture comprising of network sensors, proxy daemons and a monitoring console.
Consequently, hierarchies were the only deployment scenarios supported by this approach.
Much attention was drawn to the strict employment of standards at that time, so that
protocols such as the Intrusion Alert Protocol (IAP) and the Intrusion Detection Message
Exchange Format (IDMEF) have been incorporated (see section 2.6.2 for more details on
those formats).

Prelude

The Prelude (ThePreludeTeam (2006); Vandoorselaere et al. (2004)) project targets a differ-
ent aim with their intrusion detection system by providing a framework for intrusion detection
system communication instead of an isolated solution. As it comes with facilities for host as
well as network based intrusion detection it can be considered as a hybrid intrusion detection
system. Interfaces and libraries are available in order to integrate intrusion detection systems
from different vendors and support correlation of event information.

Prelude is an open-source project and lately has gained loads of popularity. An implemen-

Chapter 2. State of the Art 13

tation is available in a stable release and it has been increasingly deployed these days at a
steady rate. Besides the components for communication and the required libraries for third
party application integration it comes with a web based frontend as a management console.
It employs public key authentication and encryption for securing the communication between
components.

Feasibility

A number of distributed approaches for intrusion detection systems have been brought into
existence, employing very different technologies to support this feature. They are often
created for a certain deployment domain only and it is hard to compare them against each
other in a straight forward way.

The Columbia University DNAD Team became aware of this fact and has recently carried
out research on the feasibility of state-of-the-art distributed intrusion detection systems.
(Dnad (2004)) The methodology, they employ, does not simply compare approaches against
each other, but moreover evaluates and presents, which methodologies and mechanisms are
most appropriate for distributing intrusion detection alert data. The following list of results
only provides a brief overview of the outcome of their research:

• A distributed system for intrusion detection system with event data correlation is
achievable in general.

• Such a system must not be centralised.

• Bloom filters can be a suitable candidate for preserving privacy of sensitive alert infor-
mation.

• Uncomplicated and straight forward aggregation and data reduction provides an ap-
propriate level of feedback.

• Employment of network maps seems to be valuable.

• IDS audit data should not only be captured in a distributed manner but also processed
and distributed.

• Correlation functions should be provided.

• Employment of text or XML based message formats (such as IDMEF) cause a major
overhead on the network traffic.

Chapter 2. State of the Art 14

2.4.5. Distributed Intrusion Detection and Grid Systems

Starting in 2002 a new research area has been discovered by applying intrusion detection
system technology to grid systems. Tolba et. al. have published a number of papers to date
(Tolba et al. (2005b), Tolba et al. (2005a), Tolba et al. (2002)), describing an idea called
GIDA - Grid Intrusion Detection System, which is looking to protect existing grid system by
implementing IDS technology within them.

The architecture comprises of intrusion detection agents (the gathering components) and
intrusion detection servers, which analyse the data and communicate with other intrusion
detection servers in order to detect intrusions. The introduction of administrative domains
supports supervision of deployment of the agents and their registration with servers. It has
been built on top of the Globus Grid Security Infrastructure (GSI) (Welch et al. (2003); Foster
et al. (1998)) and is therefore incorporating state of the art standards in the grid context.

2.5. Secure the information channel

Nowadays, solutions for encryption and authorisation are requested more than ever before.
With the need for secured communication encryption became more and more popular over
the last years. However, basics in this area were already discussed decades ago (Goldwasser
(1997); Diffie and Hellman (1976)) and both symmetric as well as asymmetric encryption were
worked out. Symmetric encryption algorithms are using the same key for both encryption
and decryption, whereby asymmetric algorithms are using a pair of distinguish keys for those
tasks, respectively.

2.5.1. Public Key Infrastructure (PKI)

Public Key Infrastructures (PKI) were brought into being addressing and integrating several
issues for secure communications. The most important ones are:

• Authentication between the communication participants

• Encryption of all messages

• Signatures for providing non-repudiation and message validation.

Public key infrastructures are utilising asymmetric keys for satisfying their needs in au-
thentication and encryption. According to (Rhee (2003)) nowadays, there are only a very
few asymmetric algorithms being both secure and practical in view of their encryption fea-
tures. Representatives are RSA, ElGamal’s Public-key Cryptosystem and Schnorr’s Public-
key Cryptosystem. Most of the asymmetric algorithms are using primes, logarithms or elliptic

Chapter 2. State of the Art 15

curves due to the need of exhausting calculation power for performing reversal calculations
of those operations.

Symmetric encryption could be applied for protection of communications with a large
amount of data to be transported. After establishment of the connection with the help of
asymmetric keys, symmetric keys can be processed and exchanged over the secure channel.
Employment of symmetric encryption yields to less calculation power assumption whereby
the security is kept on the same level in comparison to asymmetric encryption. A variety of
different algorithms (such as Data Encryption Standard (DES) International Data Encryption
Algorithm (IDEA), RC5 or RC6) (Rhee (2003)) may be considered for integration with
knowledge grid architectures.

Most representatives of asymmetric encryption algorithms provide another feature, namely
the signing of messages. Singing of messages is useful in two very important cases:

• Message Integrity: The message shall be protected against modifications

• Sender non-repudiation: It can be proved with the use of the sender’s public key that
he / she is the sender of the message

Pre-condition for correct implementation of signatures (and for the public key infrastruc-
ture in general) is the strict secrecy of the private key as well as the preservation of the
integrity of public keys.

2.5.2. Transport Layer Security (TLS)

Transport Layer Security (TLS) is a protocol, accepted as a standard in form of RFC 4346
(version 1.1 or the former version 1.0 as RFC 2246), for providing privacy and data integrity
between two communicating parties. (Dierks and Rescorla (2006); Dierks and Allen (1999))
The Transport Layer Security protocol has been based on the Secure Socket Layer (SSL)
protocol (version 3.0), which was developed and published by Netscape.

The specification for TLS version 1.1 (Dierks and Rescorla (2006)) comes with a list of
goals it is trying to address, which are:

• Cryptographic security for establishing secure connections

• Interoperability for supporting use of TLS in different, independently from each other
developed programs

• Extensibility by providing the framework, in which protocols and algorithms may be
easily integrated

Chapter 2. State of the Art 16

• Relative efficiency in order to overcome the problems of cryptographic calculations being
very CPU instense

TLS is a layered approach, distributing its functionality over the following two layers:

• The TLS Record Protocol is the low-level layer, sitting directly on top of some reliable
transport protocol such as Transmission Control Protocol (TCP). It provides security
by employing the properties privacy and reliability for the connection. Technologies
such as symmetric cryptography (DES, RC4, etc.) and secure hash functions (SHA,
MD5, etc.) are employed for achieving these requirements.

• The TLS Handshake Protocol in turn is making use of the encapsulation of low-level
protocols provided by the TLS Record Protocol and supports authentication between
communication parties as well as negotiations about encryption algorithms and cryp-
tographic keys. In the end, the TLS Handshake Protocol provides an interface for
application layer protocols, which are located on top of TLS, to make use of the se-
cured communication channel and transfer data through it.

2.5.3. Access Control - Protection of information

Protecting information and controlling access for it has long been an issue before information
technology has evolved and there was the requirement for incorporating these methodologies
with it. Organisations such as militaries as well as businesses have put loads of effort in order
to come up with models, which can protect their assets appropriately.

Information technology research has not come up with major inventions within this area;
it has rather taken information available for protecting knowledge and applied it to its new
environment. Two very popular representatives within this context are the Chinese Wall
Security Policy and the Bell-LaPadula model. Each of them will be introduced briefly in its
section over the upcoming pages.

Chinese Wall Security Policy

The Chinese Wall Security Policy (Pfleeger and Pfleeger (2003); Brewer and Nash (1989)) has
been exhaustively deployed in commercial environments and its utilisation has been set as a
legal requirement for certain environments. The major attribute of the Chinese Wall Security
Policy is its dynamic approach for protecting information. In practise does this mean that in
the first place a party is allowed to access any item of information. The success of access to
further information is then based on relations between the information chunks in question.

Chapter 2. State of the Art 17

Technically, the Chinese Wall Security Policy achieves this behaviour by implementing a
hierarchical structure for information, using the following terms:

• In the lowest layer of the hierarchy are atomic chunks of information, the so-called
individual objects.

• The layer above is made up by grouping into organisations, which results into assign-
ment of information chunks (from the lower layer) to exactly one organisation each.

• In the top-layer of the hierarchy there are the Conflict of Interest classes, which organ-
isations are assigned to.

Basically, whenever one item from within a particular conflict of interest class has been
accessed there must not be accessed any other item from within this class unless it is assigned
to the same organisation.

The dynamic approach of this security policy makes it “a subtle combination of free choice
and mandatory control” (Brewer and Nash (1989)).

Bell-LaPadula model

The Bell-LaPadula model (McLean (1985); Wikipedia (2006)) has been introduced as a se-
curity model in the early 70s by David Bell and Len LaPadula in order to formalise the US
Department of Defence multi-level security policy. It focuses on the confidentiality of the
existent classified information.

The Bell-LaPadula model is based on a state machine, which works on the following three
entities:

• Subjects - the active part in the model

• Objects - the passive part in the model

• Operations - the actions, which are carried out by subjects on objects

The model is keeping itself in a secure state by allowing secure operations within the
system only. This is achieved by employing the following three security properties (Wikipedia
(2006)):

• The Simple Security Property making sure that a subject at a certain level of confiden-
tiality cannot read any object at a confidentiality level above its own (no read-up).

Chapter 2. State of the Art 18

• The Star (*) Security Property stating that a subject at a certain level of confidentiality
must not write to any object with a lower level of confidentiality (no write-down).

• The Discretionary Security Property uses an access matrix in order to specify discre-
tionary access control.

Although this model has gained loads of popularity since its introduction and is one of the
most important security models it is lacking applicability for modern computer systems due
to its nature and its restriction to multi-level security policies exclusively.

2.6. Define the way of speaking - Message Exchange Formats

The upcoming approach for this project is making use of communication facilities from various
areas, for which the state of the art had to be researched. In detail, the categories for
communication can be mirrored by the following list:

• Structured data formats in General - XML

• Data formats in the computer incident context

• Connection establishment

Each of them is covered over the following pages with its own section and, this way, introduces
up-to-date developments within its category.

2.6.1. Extensible Markup Language (XML) - Structure data

The Extensible Markup Language (XML) has been introduced in the late nineties and is to
be seen as a syntax for creating new markup languages rather than a markup language itself.
(Ray (2001)) Over the past decade it has ever grown in popularity, many syntaxes have been
developed and it has been utilised in a wide range of application scenarios. This exceptional
success of the XML technology can be traced back to the following short list of its features
(Ray (2001)):

• XML can store and organise just about any kind of information in a form that is tailored
to your needs.

• As an open standard, XML is not tied to the fortunes of any single company, nor
married to any particular software.

Chapter 2. State of the Art 19

• With Unicode as its standard character set, XML supports a staggering number of
writing systems (scripts) and symbols, from Scandinavian runic characters to Chinese
Han ideographs.

• XML offers many ways to check the quality of a document, with rules for syntax, internal
link checking, comparison to document models, and datatyping.

• With its clear, simple syntax and unambiguous structure, XML is easy to read and parse
by humans and programs alike.

• XML is easily combined with stylesheets to create formatted documents in any style
you want. The purity of the information structure does not get in the way of format
conversions.

The XML approach defines a way, how information has to be structured. For this purpose
there are certain entities existent within the XML language. These are:

• Elements, which are building the blocks of an XML document

• Attributes, which describe elements in more detail

• Namespaces for grouping entities together, for expanding the vocabulary and reusing
defined entities.

Many related projects have come into being around the XML technology in order to support
operations like creating, processing, transforming or searching within XML documents. The
most popular projects within this area are:

DTD – The Document Type Definition, which defines the names of elements with their
attributes and specifies rules for their combination and sequence.

XML Schema’s – An alternative to DTD for describing the structure of an XML document;
but in contrast to a DTD it is encoded in XML itself.

Sax – The Simple API for XML for parsing documents and processing its information by
defining event handlers for certain data chunks.

DOM – The Document Object Model for parsing an entire XML document and loading its
content in form of a tree structure into the memory.

XQuery – For searching an XML document for pre-defined text patterns.

Chapter 2. State of the Art 20

XPath – For accessing information within an XML document by defining the exact path
towards the desired item within the corresponding tree.

XSLT – XSL Transformations for transforming data within XML documents into a new repre-
sentation such as another XML document, a HTML document, programming language
source code, PDF documents, etc..

DOM

As previously stated, the Document Object Model is a way to keep the content of an XML
document in the memory in form of a tree structure. Nodes can be accessed easily by browsing
through the tree using child and parent relationships for entities. Transformation between
DOM and XML may be performed in both directions; consequently, DOM can be used to
parse and process an existent XML document as well as to create a new tree structure and
output a new XML document from it.

DOM was originally released by the W3C as a recommendation for a standard tree-based
programming API for XML documents. After starting up with implementations for Java and
JavaScript it has become more and more popular and may now be seen as a general purpose
XML API for many applications such as editors or file management systems. (Ray (2001))

Unlike SAX, which utilises call-back technology for events, DOM provides facilities to
create and modify objects within the tree. DOM modules are available for mapping the
corresponding XML entities. It has been well-defined which modules are allowed to maintain
what kind of relations with which other modules.

2.6.2. Exchange formats for computer incidents

In order to allow wide implementation of the approach, the protocols and interfaces between
the components have to be well-defined. There is currently a lot of research in both the area
of exchanging information in a secure manner and in defining message formats for security re-
lated messages. (Bellovin et al. (2003)) Lots of standards and protocols have been developed
such as Intrusion Alert Protocol (IAP) Gupta et al. (2001), Incident Object Description and
Exchange Format (IODEF) (Demchenko (2003); Danyliw et al. (2006)), the Intrusion Detec-
tion Exchange Protocol (IDXP) (Feinstein et al. (2002)), the Intrusion Detection Message
Exchange Format (IDMEF) (Curry et al. (2002); Debar et al. (2005, 2006)) and the Blocks
Extensible Exchange Protocol (BEEP) (Rose (2001)). Each of them will be addressed over
the following sections briefly.

Chapter 2. State of the Art 21

Blocks Extensible Exchange Protocol (BEEP)

The Block Extensible Exchange Protocol (BEEP) is a “generic application protocol for
connection-oriented, asynchronous interactions” and “permits simultaneous and independent
exchanges within the context of a single application user-identity”. (Rose (2001)) The mes-
sages carried within BEEP are arbitrary MIME content (Multipurpose Internet Mail Exten-
sions) and usually XML encoded. Security for BEEP is provided using the Transport Layer
Security (TLS) protocol.

BEEP can be mapped into different underlaying carrier protocols such as Transport Control
Protocol (TCP) connections. The Blocks Extensible Exchange Protocol uses so-called profiles
in order to define a connection between two parties; these connections are called channels.
Two different kinds of channels are existent, namely the initial tuning channels for setting
up the connection and continuous channels for exchanging data.

BEEP connections are stateful connections and can either be one-to-one or one-to-many
exchanges. One-to-one exchanges are used if the reacting peer only needs to send a single reply
to the initiating peer or answers a request with an error message. One-to-many exchanges are
established whenever a reacting peer keeps on sending answers to the initiating peer whilst
performing the requested task. In the end a termination message from the reacting peer
indicates the end of the reply.

Intrusion Alert Protocol (IAP)

Regarding (Gupta et al. (2001)) the Intrusion Alert Protocol “is an application–level protocol
for exchanging intrusion alert data between intrusion detection elements, notably sensor/-
analysers and managers, across IP networks”. It is making use of the Intrusion Detection
Message Exchange Format (IDMEF) (see following sections for details) as format for the
transmitted alerts. Noted from recent developments for the RFCs, IAP has not become
a standard in favour of the superior Intrusion Detection Exchange Protocol (IDXP) (see
following sections for details), which has been developed for the same purpose.

The Intrusion Detection Alert Protocol has been designed with transport and security
issues in mind in order to provide facilities for sending sensitive alert data across IP networks.
Additionally, it comes with options for future extensions in order to support developments
for sensor / analyser configurations or response transmissions. In order to provide reliable
and sequenced delivery of data between nodes IAP uses the Transmission Control Protocol
(TCP) as underlaying transport layer mechanism.

The communication may either be established between the sensor / analyser and manager
directly or by passing traffic through proxies and gateways. Furthermore, it makes use of

Chapter 2. State of the Art 22

Multipurpose Internet Mail Extensions (MIME) (which are well-known from current emailing
systems) in order to denote the type of alert data. There are always two TCP connections
established; one for each direction of traffic to pass using the protocol. Security is provided
using the Transport Layer Security (TLS) protocol (see section 2.5 for details).

Intrusion Detection Exchange Protocol (IDXP)

The Intrusion Detection Exchange Format Working Group (IDWG) has developed the In-
trusion Detection Exchange Protocol (IDXP), “an application-level protocol for exchanging
data between intrusion detection entities”. (Feinstein et al. (2002)) It provides facilities for
mutual-authentication, integrity and confidentially over a connection-oriented protocol. Al-
though it is prepared to transport all kind of data such as unstructured or binary data IDXP
is supposed to carry messages in Intrusion Detection Message Exchange Format (IDMEF)
(see following section).

The Intrusion Detection Exchange Protocol is directly linked to the Blocks Extensible
Exchange Protocol (BEEP) protocol in form of specification of a profile for it. Consequently,
certain issues such as confidentiality and connection control, which are addressed by the
BEEP already, do not need to be implemented for IDXP again, as it can benefit from them
due to its utilisation of BEEP. Security for IDXP is provided in correlation with BEEP by
using protocols such as Simple Authentication and Security Layer (SASL), Tunnel profile and
the Transport Layer Security (TLS) protocol.

Communication between two IXDP parties are only existent in pairs and are always estab-
lished using the BEEP protocol, by passing information through one ore more BEEP data
(continuous) channels. The peers involved in the communication may only be managers or
analysers. Due to the employment of the BEEP, peers may either communicate directly with
each other or indirectly through one or several proxies.

The Intrusion Detection Exchange Format (IDMEF)

The Intrusion Detection Exchange Format Working Group (IDWG) released an internet-
draft for the Intrusion Detection Message Exchange Format (IDMEF) for the purpose of
defining data formats and exchange procedures for sharing information of interest to intrusion
detection and response systems, and to the management systems which may need to interact
with them. (Debar et al. (2006)) In contrast to the previously discussed protocols, which are
addressing the connectivity of the communication, IDMEF is dealing with the content of the
messages and describes the structure of the transmitted data.

The IDMEF protocol was designed in order to establish a standard of data representa-

Chapter 2. State of the Art 23

tion for the communication channel between intrusion detection analysers (or sensors) and
managers (or consoles) for the purpose of improving interoperability between products from
different vendors. The Intrusion Detection Exchange Format has to be understood as an
object-oriented representation of alert data exchanged between intrusion detection compo-
nents.

An IDMEF message may either be an Alert or a Heartbeat. In contrast to the rather
simple type heartbeat the Alert class is a complex type and maintains relations to many
other types in order to include information about analysers, sources and targets with their
details, timestamps, classifications as well as assessment for the event. IDMEF in its current
status defines the structure of each of these entities by providing detailed Document Type
Definitions (DTD) for them.

Incident Object Description and Exchange Format (IODEF)

The IETF Extended Incident Handling Working Group (inch) has released in turn an internet
draft for describing computer incident data, which, in contrast to IDMEF however, describes
data on a far higher and more abstract level. The intention by the group is to “define a data
representation that provides a framework for sharing information commonly exchanged by
Computer Security Incident Response Teams (CSIRTs) about computer security incidents”.
(Danyliw et al. (2006))

As one can see the deployment environment for IODEF is communication channels between
CSIRTs rather than data transmission between components of single side intrusion detection
system deployments. Consequently, it focuses on representation of abstact incident data
rather than detailed IDS raw event information. As this incident information may be very
different depending on the deployment environment, IODEF has been created as a framework
to convey commonly exchanged incident information, which may be adopted for specific needs.

As all the other mentioned technologies the Incident Object Description and Exchange For-
mat is an XML encoded format, for which an XML schema has been defined. All information
for this data format is carried inside an IODEF document and incidents are represented by
their own classes with a number of relations, one instance of the incident class for each of
them. The information attached to an incident in form of relations is made up by items
such as timestamps, descriptions, assessments, contact information, history and event data.
Usually, one incident instance may maintain relations with many of those entities.

Chapter 2. State of the Art 24

2.6.3. Establish connection

The last part of the communication category is made up by the transmission protocols them-
selves. As this is a very wide and exhaustive area, a full overview of all available technologies
cannot be provided. Instead, I focused on the approaches, which were believed to be of any
use for the project.

The following list of approaches has been researched further:

• TCP/IP sockets for low-level communication establishment

• Remote Procedure Calls (RPC) in General

• SOAP as one representative of RPC for high-level communication establishment

Each of the technologies will be presented with their sources in more detail in the upcoming
three sections.

TCP / IP Sockets - Transfer Control Protocol / Internet Protocol

TCP / IP - Sockets (Stevens (1994)) are connection-based communication channels, which
are established on ISO OSI layer 4 - Transport Layer.

Firstly, the server side of the communication has to bind a TCP socket on its local side
and wait for incoming connections. Afterwards, the client side of the communication uses
the IP address of the server and the just before assigned TCP port to connect against this
so-called socket. At the same time the operating system of the client will dynamically assign
a port for the client so that the entire communication uses two couples of IP address and
port number for addressing.

The operating system is in charge to pass on the incoming messages to the corresponding
application regarding the port number applied. TCP-IP is a connection based protocol;
meaning that the protocol implementation itself takes care that information arrives in order
and is resubmitted in case of any problems. The Transfer Control Protocol is by far the
mostly utilised transport layer protocol in the Internet.

Remote Procedure Calls (RPC)

Remote Procedure Calls (RPCs) are a well-known technology for software development of
distributed infrastructures in order to access intelligence available on a remote location. Ini-
tially intended to be used for invocation of functions available on a remote node, they are
often used for exchange of information due to their ease of use.

Remote procedure calls have been implemented in many different protocols, such as:

Chapter 2. State of the Art 25

• Common Object Request Broker Architecture (Corba) - Very mature and well-known
cross-platform and language-independent RPC approach

• Remote Message Invocation (RMI) - The java implementation for RPCs

• Simple Object Access Protocol (SOAP) - An XML based, cross-platform and language-
independent RPC mechanism

As XML has been identified as a core technology to be used for this project only the Simple
Object Access Protocol (SOAP) is discussed further in its own section.

SOAP

The Simple Object Access Protocol (SOAP) is mainly used for getting the data from one
place to another within web-services infrastructures (Newcomer (2002)) and has gained loads
of popularity because of this technology over the last years. It comes as a combination of
the two technologies web with Hyper Text Transfer Protocol (HTTP) and the Extensible
Markup Language (XML).

In a more technical sense, SOAP may be understood as an extension to the Hyper Text
Transfer Protocol (HTTP) in order to support XML messaging. In contrast to HTTP, which
sends a request in order to get a HTML document in return for displaying it in a web browser,
SOAP sends an XML formatted request and receives an XML encoded reply from the server
via HTTP response if successful. In the end, the existent web server must be extended by a
SOAP module in order to understand and process incoming SOAP messages.

Actually, the specification of SOAP allows transmission of the messages using other carrier
protocols although HTTP is the only defined one. A SOAP message is made up by a SOAP
envelope which, in turn, consists of an optional SOAP header and a compulsory SOAP body.
The header is in place for carrying the attributes for a message such as quality of service.
The body, in contrast, contains one or more body blocks comprising of the message itself.

2.7. Grid Technology

The definition for grid has evolved over the last few decades. Len Kleinrock, for example,
predicted grid technologies as recently as the late sixties with the following statement: “We
will probably see the spread of computer utilities, which, like present electric and telephone
utilities, will service individual homes and offices across the country” (GRIDSTART (2003)).
Later on, grids were described the following way: grid is “coordinated resource sharing and
problem solving in dynamic, multi-institutional virtual organisations” (Foster et al. (2001);

Chapter 2. State of the Art 26

Foster (2003)). A very recent definition explains grid technology as “supporting the sharing
and coordinated use of diverse resources in dynamic VOs – that is, the creation, from ge-
ographically and organisationally distributed components, of virtual computing systems that
are sufficiently integrated to deliver desired QoS”. (Foster et al. (2002, 2001))

2.7.1. History and evolution

When starting the research into grid technology about a decade ago most of the work was
mainly focused on the so-called low-level or connectivity projects. As time passed more
and more projects have turned towards development of applications on top of these fabrics.
According to (Bubak et al. (2003); Graham et al. (2004)) several waves may be defined,
which mirror this evolution of grid technology. Finally, the community came up with a
de facto standard called Globus and a corresponding implementation called Globus Toolkit
(GRIDSTART (2002)). Taking Globus and its implementation as a base and extending and
modernising it have led to a new architecture called Open Grid Services Architecture (OGSA)
(Foster et al. (2002)).

Most modern grid networks are intended to either store and share huge amounts of data
or perform the calculation of certain problems distributed on several locations inside com-
munities or so-called virtual organisations. The sharing of knowledge among participants is
not yet addressed efficiently, although there is obviously a wide range of possible deployment
scenarios and applications that can be considered:

• A grid application for interconnecting different Intrusion Detection Systems at very dif-
ferent geographical locations all over Europe to establish a European Defence Commu-
nity which looks to face modern threats as a unit rather than the currently established
approach of island solution, where each organisation (no matter which type of, univer-
sity, commercials or governmental institutions) try to create and maintain their own
pool of information. When sharing one organisation’s gathered information throughout
a European wide network it is believed that this will contribute to the security situa-
tion, significantly. This approach is discussed in more detail by (Pilgermann and Blyth
(2004, ISBN: 0-9547096-2-4); Vidalis et al. (2003)) and shows the need for secure and
reliable communication for a knowledge based grid environment.

• A grid application for sharing health information between several health related or-
ganisations, for example, inside the European Union for accelerating the process of
requesting very important information for a specific topic and to enable individuals to
publish their knowledge and outcomes into a network and contribute this way to the

Chapter 2. State of the Art 27

community (Vidalis et al. (2003)). A related approach is proposed with the EU project
European Federated Mammogram Database Implemented on a grid Structure (Bubak
et al. (2003)), although this one is still based on a traditional grid topology.

• While investigating current projects inside the European Union more and more projects
seem to turn from the need of a traditional computational grid environment towards
an approach for sharing information. Another candidate; from our point of view, is the
EU funded project Astrophysical Virtual Observatory (AVO) which seems to request
similar functionality. (Bubak et al. (2003))

• Wide employment may be considered in almost all areas of science, commerce and even
lifetime since all these environments handle certain amounts of data. For example,
projects in genetics and proteomics, multimedia data archiving and financial modelling
are thought to be implemented using knowledge-based grid technology (Talia (2004)).
Whenever the publication, merging or integration of knowledge is thought to be rea-
sonable, a knowledge based grid approach might be considered to share the information
efficiently.

It was already discovered in 2002 that there is a shift from computationally intensive ap-
plications [...] to knowledge discovery and categorisation. (Graham et al. (2004)) However,
from our point of view, no modern grid middleware is able to address the issues arising for
this kind of problems properly. Cannataro et al discovered the lack of addressing the issues
of sharing knowledge in grids and, consequently, introduced their Knowledge Grid (Talia
(2004); Cannataro and Talia (2003)), which is, basically, more or less a toolkit for developing
knowledge grid applications on top of available grid architectures and does not address the
drawbacks of modern grid environments for knowledge sharing itself.

Grid has become a catch word over recent years and a variety of projects are decorated
with various names for this kind of technology. Foster developed a three point check list
(Foster (2003)) for the use of the technology grid for approaches, and the mirroring against
them justifies the right location of this project in the grid environment:

• No centralised control: a key issue for our knowledge based grid is the total avoidance
of central instance for any purpose.

• Use of standard, open, general-purpose protocols and interfaces: Basically, the same
protocols and standards are utilised as they are employed in the OGSA project. Finally,
the whole project will be open and based on standards without any exceptions.

Chapter 2. State of the Art 28

• Delivers non-trivial qualities of service, which means the utility of the combined system
is significantly greater than that of the sum of its parts (Foster (2003)): It is very reason-
able that the intelligent and adequate integration of knowledge from different locations
will build up a large knowledge base, which may, finally, be much more beneficial then
the isolated information of each node. In conjunction with decent data mining and data
merging facilities, big enhancements can be achieved.

2.7.2. Integration with Web-Services

In the beginning of this decade, people became aware of the large number of similarities in
terms of aims and methodologies for the two technologies GRID and web services. Conse-
quently, it was decided to integrate the two technologies with each other and continue future
developments together. Previous outcomes from the research and development within the grid
community such as the Grid Services Infrastructure (GSI) were reused and in 2004 a draft
for the new specifications for the so-called Web-Services Resource Framework (WSRF) has
been submitted to the Organisation for the Advancement of Structured Information Standards
(OASIS) and was finally approved as a standard in 2006 in version WSRF v1.2. (Czajkowski
et al. (2004b))

The WSRF comes, as its name says, as a framework made up by several components,
namely:

• The WS-ResourceProperties for describing stateful resources and web services and the
way these ones can be accessed.

• The WS-ResourceLifetime in order to support immediate or instant destroying of WS-
Resources.

• WS-RenewableReferences for the purpose of annotating a new WS-Addressing endpoint
for a resource in case a current endpoint becomes invalid.

• WS-ServiceGroup for grouping web services in the form of heterogeneous by-reference
collections.

• WS-BaseFault for reporting errors.

• WS-Notification for standard approaches to notification.

Many of the concepts and technologies that had been used for OGSI such as SOAP as
communication protocol or Web Service Description Language (WSDL) (Christensen et al.
(2001); Chinnici et al. (2006)) have been reused for WS-RF. In most cases, the features of

Chapter 2. State of the Art 29

OGSI are directly mapped into a location of the Web-Services Resource Framework. A major
advantage of the WSRF, however, is its modularity, which overcomes a major drawback of
OGSI, namely its complexity.

2.8. Data persistence

Since the early years of information technology, storage of information has always been a
major issue; meaning that data and processed results had to be made persistent in order to
reuse them at a later time. Early developments for data persistence were based on punchcard
technology. Following this, improvements could be made by using magnetic devices, which
are now in turn superseded by optical devices.

Detached from the developments in physical devices, many efforts have been put on intro-
ducing layers for structuring the data and its representation to the user. This way, files were
introduced, which are structured in folders, which all together make up filesystems. Since
then, there have been brought into being a variety of file system types for different purposes.
The following list is only a selection of very popular representatives:

• VFAT – File system type, which is commonly used for removeable media, such as floppy
disks or memory sticks

• FAT16 / FAT32 (File Allocation Table) – commonly used file system type for early
windows versions

• NTFS (New Technology File System) – MS propriety file system type, which is utilised
in latest versions of the Microsoft Windows operating systems

• Ext2 / Ext3 (Extended) – Very popular and mature file system types for the Linux
operating system

• ReiserFS – State of the art file system type for Linux operating systems implementing
journal file system technology

Persistence of information inside files is nowadays the first and easiest step to keep data.
With the need for storing large amounts of data and provide more sophisticated access facili-
ties database technology has been introduced, which, basically, provides another abstraction
layer between the filesystem and the user as it stores its information, which is mainly made
available in form of tables, in files as well.

Chapter 2. State of the Art 30

2.8.1. Databases

Database management systems are software that manage databases by storing data and mak-
ing that data available to several (concurrently requesting) clients for reading and modifying.
It comes with a lot of features, which make them a compulsory component in state of the art
software projects. A selection of these are:

• Structuring of data and mapping of different data types

• Mirroring relations between data chunks and ensure correctness

• Management of roles and access control for resources

• Consistency as well as savepoints, delayed commit and rollback mechanisms

• Easy access using a standard language called Structured Query Language (SQL)

• Transactions for bundled execution of a set of statements

• Replication and distribution to different geographical locations

• Backup and recovery mechanisms

• Change and Access logging

• Automated optimisation for executing statements

Starting up the developments with relational database systems there are different kinds of
database managements system available these days, which are:

• Relational database management systems

• Object oriented database management systems

• XML database management systems

Each of them is introduced briefly in a section over the upcoming pages.

Relational database management systems (RDBMS)

Relational databases, the original form of databases, store tables of data. Regarding to (Quin
(2000)) these tables have the following characteristics:

• It consists of many small pieces of information

Chapter 2. State of the Art 31

• Information is kept in atomic pieces within cells

• Every row within the table is considered to be complete; a column, however, spans with
its heading over all entries, saying rows, within the table

The major advantage of relational databases has been its option to establish and maintain
relationships between the tables, which are also called objects. Two attributes of relationships
are mapped into the databases, namely the type and the cardinality of the relationship.

With the introduction of relational databases the corresponding language to access data
inside them had been released as well, namely the Structured Query Language (SQL). Its
developments can be traced back to the late 70s; however, its current version has been
accepted as a standard by the International Organisation for Standardisation (ISO) in 1992.
Although, vendors of database management systems apply slight modifications and extension
to SQL, it is a common language to access data from relational databases nowadays.

Object oriented database management systems (OODBMS)

With the high popularity of object oriented approaches for modern information systems
there was a growing need for making data of these systems persistent in an efficient way.
The utilisation of relational databases for storing information from object oriented software
architecture, as performed initially, turned out to be insufficient as RDBMS are not prepared
by design to hold this kind of information and, as part of the development process, loads of
efforts have to be put on the mapping between the software systems internal data model into
the relational data model, used by the database, which is based on tables. Object oriented
databases have been looking to overcome these problems by storing the data as it is existent in
the information system already and, this way, enable the developers to utilise one consistent
database model throughout the entire information system. (Quin (2000))

Early research on object oriented databases can be dated back to the late 70s; however,
releasing of products within the context had only been started in the late 80s. Since then,
there has been a significant growth in both, the number of products offered by the vendors and
the requests of developers and users for this technology. A major advantage of OODBMSs is
their ability to map very complex relationships between objects; consequently, it has become
more and more popular in industrial sectors such as e-commerce, engineering product data
management and medicine. The major drawback of OODBMS technology is its incapability
to process large amounts of data, which leads to the following conclusion for the presented
database management systems so far:

Chapter 2. State of the Art 32

• For high-volume, low-complexity data sets one should use relational database manage-
ment systems

• For high-complexity, low- or reasonable volume data sets one should employ object
oriented database technology

Technically, the developer may benefit from the object-oriented features, supported by
OODBMS, such as inheritance and versioning.

XML database management systems

As much as object oriented software design has been established as state of the art for software
development, the Extensible Markup Language (XML) has been becoming more and more
popular for structuring data for information exchange. XML as the core technology has
been addressed within this chapter already (see section 2.6.1 for details). However, with
the growing popularity of this technology a requirement has been identified to make XML
encoded information persistent on one hand, and transform data inside database into XML
encoding when querying the database on the other.

Interfaces have been created, located on top of databases, which are capable of processing
requests to the database, which are XML encoded on the one hand, and which return results
from the enquiry in XML encoded format in turn. No standard has yet been established
for this approach, but a number of companies and organisations have introduced their own
concepts employing this idea, such as:

• The Microsoft Software Developer Network has introduced a technology called T-SQL,
which uses an XML document for both the querying of a database as well as the
returning of the corresponding results. (Xynos (2005); Dobson (2004))

• Sun Mircrosystems makes use of mapping from SQL into an XML structure for reasons
of persistence for their enterprise java beans (EJB). (Xynos (2005))

XML encoded representation of database content can benefit significantly towards the pro-
cessing of information as it contains the structure and meaning of entities itself. Furthermore,
it facilitates the process of transformation as an XML document is a very good starting point
for transforming into other representations (such as a new XML document, HTML, PDF, etc)
by using technologies like XSL Transformations (XSLT) (see section 2.6.1 for more details).

Chapter 2. State of the Art 33

2.9. Conclusion

Within chapter 2 a detailed overview has been presented about history in related research
areas as well as state of the art projects and technologies for them.

First of all, a general overview about security in information technology has provided an
overview and put the technology intrusion detection into context. An introduction into in-
trusion detection system technology has presented the concepts, as well as types, available
for this technology. The topic has been narrowed down further by focussing on distributed
intrusion detection systems and the evolution of these systems has been presented chrono-
logically with an exhaustive list of available projects. The second major topic named grid
technology has been introduced by providing some information about the history and pre-
senting the standards within this area. Recent developments towards co-operation with web
services technology have been addressed.

Besides the two major topic IDS and Grid there are a number of projects and research
areas, which this project needs to gain information and knowledge from; in detail those ones
are:

• Network communication and its protocols and standards

• Securing the network connections for ensuring privacy and integrity

• Message formats for sending information in a structured manner

• Data persistence in general for evaluating recent database technologies

With the available information about state of the art projects within (distributed) intru-
sion detection systems as well as grid technology, the limitations and potential for further
developments may be worked out. Chapter 3 presents the objectives for this project in detail
and introduces a common set of vocabulary for the project. Afterwards, the chapters lay
down, how to design, implement and evaluate the methodology and, finally, chapter 8 gives
details about the achieved results.

Chapter 3.

Objectives and Terminology

3.1. Introduction

In the previous chapter the state of the art in the area of distributed intrusion detection has
been presented in intricate detail. Within that chapter the lack for exchange security related
information such as intrusion detection system audit data across organisational boundaries
has become clear already.

With this chapter the idea of inter-organisational intrusion detection will be presented in
more detail. First of all, the presentation of three very different deployment scenarios shows
the necessity of inter-organisational intrusion detection system technology in modern network
environments. Afterwards, the objectives for such an approach are presented; whereby the
connection to modern grid systems will be drawn. The chapter is finished off with an overview
of expressions and ideas, which are essential for the presented IOIDS approach. They provide
a common vocabulary in order to understand the chapters 4, 5 and 6, which contain technical
details of the architecture and implementation.

3.2. Deployment Scenarios

Inter Organisational Intrusion Detection is thought to be beneficial in very different em-
ployment areas. From the interconnection of event loggers from different companies up to
the connection of computers of home-users connected to the Internet is considerable. The
three following scenarios have been chosen in order to present the flexibility in employment
environments for IOIDS:

1. Interconnection of Intrusion Detection Systems for an entire Supplier-Consumer chain.

2. Integration of security related information from academic institutions on the one hand
or collections of commercials on the other from all over the Internet for improving
detection rates and counter measuring.

34

Chapter 3. Objectives and Terminology 35

3. Open communities for private end user protection.

The following three subsections describe the mentioned scenarios in detail.

3.2.1. IOIDS in Supplier-Consumer chains

After implementation of Inter Organisational Intrusion Detection in near future, a require-
ment for providing security related information might be part of agreements between several
parties, such as convenient for the relationship between suppliers and consumers, and finally,
the entire chain of suppliers, parts of a product travel until it ends up at the final consumer.
Figure 3.1 pictures the problem in more detail:

Figure 3.1.: Supply Chain Scenario

In the drawn picture Retailer I might simply demand for each of its potential suppliers to
provide a certain amount of security incident related information about the organisations’
infrastructure. Moreover, the suppliers of the suppliers are requested to provide the same
kind of information. This approach will be pushed to a certain grade and the retailer can
finally make sure that it will be informed whenever some kind of significant behaviour has
occurred. A policy will be brought into being, which the supplier on the one hand but also
the retailer on the other have to align to. Finally, a Trusting Community (in the example
named TCA) will be brought into being.

The following requirements for this kind of infrastructure become obvious already when
considering this situation only:

Chapter 3. Objectives and Terminology 36

• Each node must be totally confident about the location, the data was originated at,
and based on this knowledge, decides about the processing and integration of the data.

• Information from several types of audit data generating applications must be able to
be processed and integrated.

• Any supplier or retailer must be enabled to share information with nodes from several
Trusting Communities.

3.2.2. Sharing of security related information between academic institutions

Another deployment scenario draws the attention to the problem of missing facilities for
exchanging security related information between organisations on a very abstract level. Al-
though organisations such as Computer Incident Response Teams (Cert) (Cert/CC (2004)),
Common Vulnerabilities Exposes (CVE) (CVE (2004)) and Information Sharing and Analysis
Centres (ISACs) (IT-ISAC (2005)) are supporting this process by providing common names
and descriptions the actual process of publishing and gathering information is left to humans;
hence, it involves a reasonable amount of manual intervention.

Figure 3.2.: Inter Organisation IDS in communities

Introducing a ”European Educational Community for Network Defence” would be able to

Chapter 3. Objectives and Terminology 37

cut down this amount of time observably. After agreeing upon a policy for exchanging security
related information (including high-level message formats, roles of nodes, trust relationships,
etc.) and deploying them into a community specific protocol, knowledge will be exchanged
automatically.

The same approach is considerable for a reasonable number of companies throughout a
certain geographical area such as the European Union. Once they became aware of the
potential benefits of exchanging incident, attack and countermeasure information between
each other, they start exchanging this type of knowledge and will face the problems of modern
threats as a unit rather than isolated from each other.

The two scenarios do not exclude each other. This way, certain universities might also
contribute knowledge to the corporate community or vice verse. After all, it will depend
on the policies being in place in both communities. Trust within these so-called Trusting
Communities must never be undermined by any node.

In fact, the information or knowledge maintained and provided within as well as across the
communities belongs to everybody and nobody. It is comparable with the approach of open
source software, which has been gaining lots of popularity over the recent years. Everybody
may contribute and benefit from the infrastructure and no single node can take it down. The
behaviour of a community is based on the policy, which the initial members have to agree
upon.

3.2.3. Open communities for private end user protection

Nowadays, also end users become more and more aware of the threats they are facing when
connecting their machines to the Internet. Enlightenment and availability of free and open-
source software for measures such as anti-virus and personal firewalls have provided an en-
hancement of protection for home computers. (NSS (2005)) Ease of use and simple configu-
ration are pushing this process.

However, Intrusion Detection Technology has not yet reached a significant penetration in
the end user market. A lightweight approach for an IOIDS architecture is able to change
this situation significantly. End users are no longer depending on the decisions of compa-
nies, instead they can create their own communities and, this way, exchange security related
information among each other. They do not need to trust another party about up-to-date
information, but they may decide themselves, which Trusting Community they want to join
and which members they want to trust as a reliable source of information.

Chapter 3. Objectives and Terminology 38

3.3. Objectives

The subjacent communication infrastructure has many attributes in common with currently
available grid systems. However, due to its nature of sharing knowledge instead of calculation
power or storage capacity it cannot be considered directly as such one. Consequently, our
modified version of a grid infrastructure has been named knowledge grid. Besides the at-
tributes, this modified infrastructure has in common with traditional grid systems, some are
novel and unique to the knowledge based approach. The following objectives were grouped
for this approach of a knowledge based grid infrastructure:

3.3.1. Knowledge Grid in General

• Information (knowledge) sharing as the major goal on top of all issues arising.

• Since the exchanged knowledge may consist of very confident or sensitive information,
security has to be taken into account as an important issue. This includes but is not
limited to confidentiality, encryption, authentication, authorisation, message validation
and non-repudiation. Research on security for grids has been undertaken by the Open
Grid Service Architecture Security Working Group (Nagaratnam et al. (2002)) and
especially for communities in ”The Anatomy of the Grid - Enabling Scalable Virtual
Organisations” (Foster et al. (2001)) and ”VOMS, an Authorisation System for Vir-
tual Organisations” (Alfieri et al. (2003)) and their achievements will also be used for
addressing the security goals in knowledge based grid environments.

• Reliability is addressed by ”ranging from client-server to peer-to-peer technology” (Fos-
ter et al. (2001)). Moreover, consistence of the information must be guaranteed through-
out the whole grid network.

• It is very important that the members of a community may trust the shared information
and that they are furthermore able to assess the trustworthiness of information based
on the source of information. This can be achieved using trust relationships which
were in a similar way already described in (Foster et al. (2001)) as ”flexible sharing
relationships”.

• Knowledge grids must scale from small locally employable up to internet-wide scenarios.

• Easy deployment for a wide range of applications and the ensuring of interoperability
and flexibility. This includes (Foster et al. (2001)):

Chapter 3. Objectives and Terminology 39

– The concealment of functionality for overlaying implementations in all layers of
the approach.

– An approach totally based on standards and the creation of an open architecture
for employment with other implementations

– Easy to use interfaces

3.3.2. Objectives in common with traditional GRID technology

Furthermore, objectives already described in (Foster et al. (2002)) have to be employed, too:

• Error notification and error handling including rollback mechanisms for ensuring con-
sistency of information throughout the entire grid network

• Address naming and address resolution. In this point of view further issues arise when
taking into account the requirement of protecting identities as described in more detail
in (Pilgermann and Blyth (2004, ISBN: 0-9547096-2-4)).

• Upgradeability and compatibility between versions.

• Authorisation and controlling the flow of data.

• Concurrency control, on the one hand within communities, but also, on the other hand,
for traffic across community boundaries.

• Scalability, which enables the employment of the approach for both local and large scale
networks.

3.3.3. Objectives not adopted from traditional GRID technology

More objectives are often described for modern grid topologies, which are not considered to
be compulsory for a knowledge grid environment due to the differences between traditional
and knowledge based grids. These include:

• Quality of Service - since we are not dealing with calculation power or storage sharing,
the Quality of Service might only be applied to the whole grid network in the view of
availability and the like, but for the knowledge services QoS is not thought to provide
an added value.

• Since everybody contributes knowledge to the grid and also gathers information from
it no accountability is considered to be employed so far.

Chapter 3. Objectives and Terminology 40

• Delegation of authentication credentials are essential in traditional grids for performing
processes on behalf of users and, this way, initiate new processes on other locations
with these credentials without verifying them each time again. For knowledge based
grids, however, this issue is not thought to be of high interest.

3.3.4. Objectives in particular for distributed Intrusion Detection Systems

Besides the issues arising for the subjacent communication platform the ones for the dis-
tributed intrusion detection system application running on top of it have to be defined as
well. After introducing a list of generic aims for distributed intrusion detection systems four
subsections will draw more attention to issues arising for such a wide-scale approach.

In general a distributed intrusion detection system architecture should satisfy the following
list of objectives:

• Completeness of detectable attack patterns – in section 2.3.2 several detection technolo-
gies for intrusion detection systems have been introduced. It is desirable for an IDS to
cover as many of those technologies as possible.

• Correlation of event information – intrusion detection event information is not processed
in an isolated manner on one side anymore; instead, event information is correlated over
several domains in order to improve detection and minimise false positive rates.

• Stateful inspection – one important feature of network intrusion detection systems is
the ability to identify attacks, which span over several network packets (segments,
datagrams, fragments, etc).

• Reporting and user interaction – besides the notification of the user using alerts in
near-realtime, reporting facilities should be in place and the user should be able to
interact with the system in order to apply configurations or initiate other reactions.

• Response and countermeasure – on top of the reporting and alerting facilities IDS are
often able to carry out actions in response to certain attacks. These often end up in
countermeasure procedures and are not rarely carried out with the help of other nodes
within the network (firewalls, routers, operatings systems).

• Integration with existent IT security infrastructure and management environment –
security can only be achieved by the combination of a variety of different security
measures, which should be able to integrate with each other. In the end it is beneficial
to integrate all those in a central management environment.

Chapter 3. Objectives and Terminology 41

• Realtime distribution – in order to react on time to malicious behaviour, knowledge
must be available as soon as possible - preferably in realtime.

• Dynamics for distribution domains – different kinds of knowledge may require different
domains for distribution. Facilities should be in place, which satisfy this need in a
simply configurable manner.

• Duplicate data identification and avoidance – especially in the context of domains with
the ability for knowledge to travel across domain boundaries, measures have to be in
place in order to avoid the processing of the same knowledge several times.

Message types

When dealing with distribution of intrusion detection audit data in the context of knowledge-
grid systems the messages exchanged within the systems change from simple representation
of raw events (as supported by the well-known standard IDMEF) to more complex and
dynamic message formats. The following two message types became necessary for an IOIDS
infrastructure:

Knowledge Requests – Due to a certain situation the local node identifies the need for more
information. Consequently, it populates a request with certain parameters to gather
more knowledge. Other nodes may reply to this messages with information from their
side satisfying exactly the given parameters from the request.

Information Updates – The local node identifies certain patterns within the available event
information as important enough to be shared with other nodes from the community
or several communities. This way it will assemble an information update in order to
populate the significant information.

Besides the need of requesting knowledge from other nodes on top of the well-known concept
of populating the messages must provide mechanisms to carry more complex information.
This way, one event might be in relation to certain other events which should be carried
within the same message and the given relation should be represented as well. Mechanisms
should be in place which allow integration of new information in a very simple manner.

Integration of third party event generators

IOIDS has been developed with the idea in mind to interconnect several organisations in
order to share their security related information such as intrusion detection audit data. It

Chapter 3. Objectives and Terminology 42

is clear that those organisations have security measures and applications in place already in
order to protect their infrastructure. IOIDS shall not replace those measures but instead take
the available information, normalise it and share it with other nodes. In order to integrate
knowledge from other applications (our so-called third-party event generators) the following
objectives have to be addressed:

• A modular plug-in mechanism to ease the process of supporting new event generators

• Well-defined and well-documented interfaces to integrate applications

• Adoptable message format to support the transport of very different types of informa-
tion

• A dynamic backend data repository to make all the information from different sources
persistent

Garbling of information

An adequate permission and access control model should be able to protect the local knowl-
edge appropriately. However, due to restrictions applied by the access control certain knowl-
edge will remain on the local node without being populated in order to protect the organisa-
tion’s assets.

Consequently, it could be very beneficial to publish some information to a certain dis-
tribution domain whereby addressing the organisational protection issues by disconnecting
the knowledge in question from the identity of the sender. This must be performed on the
following two layers:

Anonymising on network layer – The receiver of the message must be prevented from identi-
fying the original sender by examining (source) address information within the network
protocols (such as the IP source address). Nevertheless, the receiver must be able to
classify the received chunk of knowledge and make sure it was initiated at a trustworthy
source within the network.

Sanitising on application information layer – The event information, which is transported
within the IOIDS messages, must be rid by all information, allowing inference to its
identity. This way, well-known fields with address information have to be replaced by
place holders as well as certain pre-defined pattern should be garbled in full-text search
and replacement.

The employment of anonymising and sanitising mechanisms will result in sharing a larger
set of information without violating the organisation’s integrity policy.

Chapter 3. Objectives and Terminology 43

Trust and Protection of information

Very sensible information is carried using the IOIDS infrastructure. Thus, strong and reli-
able protection mechanisms have to be in place in order to satisfy the security needs. It is
believed that security within the infrastructure can only be achieved by employment of trust
relationships and implementation of security policies. These have to be accompanied by the
following issues in order to provide overall security:

• Strong, reliable and easy to configure security mechanisms / security policy – The
security policy must be strong on the one hand in order to satisfy the need of protecting
the organisational assets. On the other hand, however, it must be easily configurable
in order to adopt the needs of each single node.

• Authentication of members – It is fundamental for a secure infrastructure that members
may authenticate between each other in a reliable and trustworthy manner.

• Confidentiality and integrity – Messages must not be intercepted by anybody; neither
for the reason of gaining information, nor for tampering the content. Furthermore, it
must be made sure that a message was sent by the party it claims to be coming from.

• Authorisation and privacy – Local knowledge must be protected in a way that it is only
distributed to members, which are intended to read the knowledge chunk in question.

• Decentralised control and local responsibility - All responsibilities within the network
should be shared in a peer-based manner; hence, a total avoidance of single points
of failure should be achieved. All decisions should be made on the local node, which
provides the highest possible degree of trust.

3.4. Terminology

Two major components are essential for this approach, namely the Grid for Digital Security
(G4DS) and the Inter-Organisational Intrusion Detection System (IOIDS) (see section 4.4
for a more detailed overview). The former one, Grid for Digital Security, describes all the
issues, methodologies and technologies for the subjacent architecture. It is a knowledge based
Grid architecture which deals with all issues related to provide and secure the communication
channel and provides interfaces for distributing knowledge using this infrastructure (details
for G4DS are discussed in chapter 5).

The Inter-Organisational Intrusion Detection System instead is an application running on
top of the Grid for Digital Security. It makes use of the provided architecture and provides an

Chapter 3. Objectives and Terminology 44

infrastructure for exchanging security related information such as incidents, attack descrip-
tions, information about new attacks in general or related information about countermeasure
and the like. (The IOIDS application is discussed in chapter 6.)

Figure 3.3.: High level description of overall architecture

In fact, the entire system comprises of the following components (check also Figure 3.3):

1. Grid for Digital Security (G4DS) - The G4DS represents the fundamental architecture,
which the whole system is built upon. Several issues such as encryption and authorisa-
tion are addressed in this module. Due to a decentralised approach users of this module
will benefit from a robust and reliable architecture. Trust relationships are built up in
this module which will enable applications to make publishing decisions based on the
role of the members.

2. Inter Organisational Intrusion Detection System (IOIDS) - The IOIDS is an imple-
mentation that utilises the G4DS. It deals with all issues directly related to Distributed
Intrusion Detection Systems such as Intrusion Detection message formats and exchange
standards.

3. IDS-Integration Module (IDS-IM) - The system will be applicable for a variety of dif-
ferent Intrusion Detection Systems. The integration of the actual IDS is performed by
modules which allow an easy plug-in of the different products. At the end of the day,
communication can be established between totally different (Enterprise) IDS utilising
this Inter Organisations Intrusion Detection System infrastructure.

Chapter 3. Objectives and Terminology 45

4. Connected (Enterprise) Intrusion Detection System (EIDS) - Currently, there are plenty
of Intrusion Detection Systems available implementing different detection and integra-
tion technologies. For this project, no separate IDS will be developed but integration
of IDS will be performed. Nevertheless the (Enterprise) Intrusion Detection Systems
represent one component of the overall solution.

In the KGrid environment several roles exist with different permissions. Beside the roles,
which may be defined on application basis, there are a few KGrid specific ones for making
the system work. The following paragraphs give an introduction to knowledge services and
Trusting Communities and then list the various roles with their permissions and responsibil-
ities.

3.4.1. Knowledge Services

A knowledge service is the implementation of one specific application within the KGrid topol-
ogy. It may span over several Trusting Communities or may include members of certain
communities, whereby not the entire TC is part itself.

Knowledge Services define the communication (protocols, algorithms) on an application
layer base. This means that the knowledge service itself is described using the Knowledge
Service Description Language (KSDL), which has been developed as part of this project
including the definition of an XML-Schema for KSDL service descriptions.

The Knowledge Service Description maintains information about the following attributes
of a knowledge service:

• Unique KGS identifier for the Knowledge Service

• A name for the Knowledge Service

• Current version of the Knowledge Service description

• Optionally, a description

• Information about Service Authorities (SAs) (their identifiers and certificates)

• Information about members and member communities with their identifiers and certifi-
cates

An example for a knowledge service description and the corresponding XML schema are
provided on the resources CD. The knowledge services are discussed in detail in the chapter
for G4DS in sections 5.2.3 and the integration of services in section 5.3.6.

Chapter 3. Objectives and Terminology 46

3.4.2. Trusting Communities

Trusting communities are an aggregation of nodes, which agree upon a common purpose
and communication protocols. Instead of defining the service properties it defines protocols
and algorithms on a lower level of communication. This way, encryption and authentication
protocols are agreed upon, which are allowed to be used within the trusting community.
Furthermore, agreements about issues such as network protocols are determined here (either
to use SOAP, HTTP, SSH, etc.). The responsibility for intercommunity communication
including its translation between the protocols is taken by so-called Gateways for Trusting
Communities (TCGW) (explained in section 3.4.6).

Each Trusting Community is described in an XML based format with the Community
profile. The development of the XML-Schema for this profile has been part of the project.
The following attributes for a TC are defined in there:

• Unique TC identifier for the Trusting Community

• Name of the Trusting Community

• Current version of the Community Description

• Optionally, a description for the TC

• Information about Community Authorities (CAs) (their identifiers and certificates)

The concept of communities is discussed in detail in section 5.3.5 within the Grid for Digital
Security chapter. Further information about descriptions for communities are provided in
section 5.2.3. An example for a community description and the corresponding XML schema
are provided on the resources CD.

3.4.3. Members (M)

A member represents any node in the entire KGrid topology. A network node becomes a
member as soon as it joins its first community. Members maintain the following attributes:

• In general:

– Private keys in order to authenticate and sign messages.

– A public key for each private key to be distributed throughout the different com-
munities and knowledge services.

• For each community it is a member of:

Chapter 3. Objectives and Terminology 47

– A copy of the community description.

– The identities and descriptions of all CAs of the TC.

– A copy of a list of all members of the TC. This one will change over the time; in
fact, updates for the member lists will be polled from one of the CAs frequently.

• For each knowledge service (KS) it is subscribed to:

– A copy of the knowledge service description. (KSDL file)

– The identities and descriptions of all SAs of the KS.

– A copy of the list of all subscribers for the KS. This one will change over the time;
in fact, updates for the member lists will be polled from one of the SAs frequently.

An example for a member description and the corresponding XML schema are provided
on the resources CD. Some more information about their processing is discussed within the
G4DS chapter in section 5.2.3.

3.4.4. Service Authority (SA)

Service authorities have special privileges for maintaining knowledge services (KGS). For
each KGS there are at least two SAs. For small and medium-sized communities every node is
intended to be a Service Authority. This supports the approach of avoidance of single points
of failure. However, policies different from this one may be supported by limiting a certain
set of nodes to carry out the responsibility of a SA. Beside tasks performed by each member
of a service, SA have to take care of the following additional matters:

• Signing new members to the KGS. A new member may request its membership to a
knowledge service at any SA of a knowledge service. Once the request is granted, the
SA populates the information about the new member of the SA throughout the entirety
of nodes subscribed to a service, including its identifier and certificates (with the public
keys).

• Signing new communities to the KGS. There might be occasions, where it is sensible
to add an entire TC to a Knowledge Service rather than single members. This way,
any Community Authority of the requesting TC may pass a joining request to any of
the SA of the knowledge service. Once the request is granted, the affiliation of the new
TC to the KGS is populated throughout the service, including identifier and certificate
(with its public key) of the TC.

Chapter 3. Objectives and Terminology 48

• Changing roles of members for the KGS. Each member will be equipped with an initial
role when joining a Knowledge Grid Service. Depending on the policy for the service
this might either be a normal member or a Service Authority. These roles, however,
are not static for this member; they might be subject to change later on. Every Service
Authority is able to change the status for a member towards a Service Authority.
The other way around, however, may not be performed this way. Since all Service
Authorities have got the same status (there is no hierarchy), once granted Service
Authority statuses cannot be revoked from a member later on.

• Changing the KSDL; hence, introducing new versions of it. During the lifetime of a
service, its service description will change several times. Only Service Authorities are
able to introduce and propagate a new version of the description.

3.4.5. Community Authority (CA)

After all, the whole KGrid is peer based, thus central instances are totally avoided. However,
for the maintenance of communities the introduction of nodes with special privileges is in-
alienable. (For a very open community one may still define each member as a CA). CAs are
defined at introduction time of a new community. New CAs may be added later on by an
existing CA. Each TC must have at least two CAs in place. Responsibilities of CAs include:

• Signing new members for the TC. Whenever a member is willing to join a Trusting
Community it may request membership at any of the CAs for a TC. Once the mem-
bership is granted, the information about the new member together with its identifier
and description of the member are populated throughout the community.

• Changing roles of members within the TC. Again, new members of a Trusting Com-
munity will get assigned an initial role within the TC depending on the policy of the
community. However, these roles are not static and may be changed for any member
by any of the CAs of a TC. Downgrading the status from a CA to a normal member is
not possible since all CAs have the same status and there is no hierarchy in place.

• Changing the description of a TC. The description of a community will evolve during
its lifetime. New protocols or encryption mechanisms may be added and these changes
have to be mirrored in the description for the community. Changes to the description
are supported by introducing a new version of the Community Description. Each CA
is allowed to introduce and propagate a new version of the TC Description File.

Chapter 3. Objectives and Terminology 49

3.4.6. Trusting Community Gateways (TCGW)

Within the network of communities, an additional role for inter community communication is
required. The so-called Trusting Community Gateways are responsible for passing messages
from one TC to another. The passing is restricted to certain rules, which are defined in the
TC policy. A TCGW is always defined for a certain pair of communities and for a certain
direction. The rules for passing messages are defined in the TC description itself and are
administered by the Community Authorities. The TCGW itself is only an executable role.
See section 5.3.5 for more details on Trusting Community Gateways and inter community
communication.

3.5. Conclusion

In this overview about the objectives and terminology the actual idea of Inter-Organisational
Intrusion Detection has been presented and it has been shown, how such a technology fits
in modern network infrastructures. Firstly, by explaining three very diverse deployment
scenarios for IOIDS the practical usefulness has been presented. By giving a categorised
overview about objectives for such an architecture the aims have been laid out for the further
research and development process. Finally, a first outline of the upcoming architecture has
been given by introducing an essential set of vocabulary, which will be used again and again
over the remaining chapters.

With the given information in here the following chapters can present all the details about
the IOIDS architecture. First of all, chapter 4 provides a highlevel overview about architec-
ture and implementation and will lay down the procedure for evaluating the project, whose
execution is explained in detail in chapter 7. The two remaining chapters 5 and 6 are deal-
ing with all the architectural and technical details for the subjacent communication platform
Grid for Digital Security (G4DS) on the one hand and the actual Inter-Organisation Intrusion
Detection System application on the other hand.

Chapter 4.

Experiment Definition

4.1. Introduction

So far is has been discussed what the expectations for a so-called Inter-Organisational Intru-
sion Detection System are. In this chapter, the concept to address those expectations will be
introduced. Besides the introduction of the proposed architecture itself an evaluation process
is described to examine the capabilities of such a one.

This chapter is divided into four parts. First of all, the concept of IOIDS is put into IT
security context and the potential for enhancements to be gained with such an approach is
outlined. Afterwards, an evaluation methodology is described, which compares IOIDS with
similar or related approaches by the processing of available publications and documentations.
The third section is dealing with implementation issues of IOIDS and explains briefly the
components of the architecture including references for more detailed information. Following
this the last section draws attention to the practical evaluation process for IOIDS and, this
way, defines the way in detail, of how to carry out an experiment in a laboratory environment.

4.2. Overview

Recent surveys and observations have shown that security measures in general and intrusion
detection systems particularly have not yet achieved the results they should. It is commonly
agreed that the problem is not grounded in the missing of audit data in the first place, but
much more in the processing, generalisation and distribution or exchange of the processed
results. Practically, there is too much data presented to the user in an unstructured manner
so that they, in the end, cannot take much advantage of intrusion detection measures in place.

It is believed that the potential of improvements for intrusion detection technology may be
categorised under the following three topics:

• Improvements for the sensors, which results in higher quality and more exact and

50

Chapter 4. Experiment Definition 51

complete audit data at the gathering components

• Enhancements in the view of correlation and abstraction of data in order to identify
similar attack patterns and reduce the amount of data in progressive stages

• Distribution of data among several peers in order to identify distributed attack patterns
and in order to tackle the security problems in IT networks as a unit rather than by
each party in an isolated manner

Intrusion detection systems are not a completely new technology and since their introduc-
tion about two decades ago new detection mechanisms have constantly been developed and
deployed. It can be stated that a vast amount of research and development is put into this
area, which results in ever improving mechanisms for category one.

The need for generalisation and correlation of ids audit data has been identified soon
after wider deployment of intrusion detection system in real-world throughout the Internet.
Security analysts were facing ever growing amounts of data – the reporting of single alerts or a
simple counting or ordering by certain attributes could not support very well with identifying
attacks in the network. For about one decade researchers and industry attended to this
problem and initiated a number of projects and approaches, which employ very different
technologies such as data mining, regular expressions, object orientation or neural networks
for generating a more abstract view on the data. It is believed that more efforts will be put into
this topic over the upcoming years and that future intrusion detection system deployments
will benefit significantly from enhancements in this area.

The last category with the problem of distribution of ids audit data has started to gain
attention over the last decade only. Firstly, intrusion detection system vendors became aware
of the requirement to correlate ids event data from several location within the local network,
which is usually carried out in a hierarchical manner with deployment of a central event data
base, where all event data from all sensors (usually passed through certain proxies) ends up.
These modifications have shown significant improvements in the usability of ids audit data.
However, to date the distribution of this data is forcefully kept inside organisations – in the
authors belief due to a lack of concepts to protect this sensitive knowledge appropriately
and a way to establish trust relationships with parties in a simple manner and exchange this
information between them based on these trust relationships. A major issue for trusting an
approach is, in the author’s belief, the fact to maintain control about the level of trust and
the information shared on the local node.

The following three sections will explain the problem of intrusion detection technology in
the overall context of information technology. Afterwards, shortcomings of currently available

Chapter 4. Experiment Definition 52

approaches are presented and, last but not least, a list is given, which mirrors the potential
for enhancements for distributing intrusion detection audit data in the view of the author.

4.2.1. Problem in IT security context

In the early years of the Internet developments were not carried out with drawing much
attention on security issues for the transmission of data. Consequently, nowadays there are
a high number of protocols in place in the Internet, which were not designed to be used for
security sensitive contexts. As a result, a number of high level protocols have been established
on top of those in order to implement security as kind of a work around. Additionally,
tools and applications have been developed and deployed with the purpose of controlling
and monitoring the networks and identifying as well as reporting malicious or anomalous
behaviour.

An early approach for protecting networks was the deployment of firewalls. In the early
years of firewalls, very simple technologies such as packet filtering regarding network addresses
or applications (port numbers) could raise the barrier for an intruder to reach their aims. With
deployment of those technologies, however, attack patterns were developed to evade them
and more sophisticated firewall approaches were brought into being such as application layer
firewalls, which perform inspection of the network traffic and attempt to identify malicious
patterns.

An ever growing thread in the Internet is the spreading of viruses and trojans. A major
problem with these threads is their non-recognisability by firewalls as they are making use
of communication channels, which are usually not blocked by firewalls (such as email or
HTTP). Nowadays, the most common way to tackle the problem of viruses and trojans is the
deployment of anti-virus software. This is performed both, on each node in the local network
(desktop anti-virus) and on central instances such as central virus scans on email servers.
These technologies support well with countermeasuring viruses, however, the signature based
approach always requires a priori knowledge about new viruses, which leaves a certain time
gap for the virus to spread between its release and the update of the signature database in
the antivirus software.

More problems are based on the theft of information, usually carried out using technologies
like eaves-dropping or man-in-the-middle attacks (leaving behind the huge amount of theft
carried out by utilisation of social engineering technologies). Employment of authentication
and encryption mechanisms based on public key infrastructures are looking to overcome these
problems.

The presented countermeasures are of course only a collection of very popular candidates

Chapter 4. Experiment Definition 53

(see also section 2.2 in the state of the art chapter for more information). The problem
with this collection, however, is the lack of a reporting mechanism, which is able to provide
information about the status of the network and its entities whenever none of the existing
mechanisms was able to identify or prevent malicious activities. At this point the approach
of intrusion detection kicks in - due to its passive nature it can observe and evaluate activities
in the network or on a host without being identified by a potential intruder.

4.2.2. Shortcomings of available solutions

As previously mentioned, intrusion detection has occurred in the context of information tech-
nology quite a few years ago already. Many efforts have been put on the improvement of this
technology over the last years; however, with enhancements in the detection mechanisms the
intruders align their attacks and behaviour to the new environments and again and again
they find ways to evade novel technologies. Practically, the modifications and additions for
intrusion detection (and often for IT security in general) are rather reactive than proactive;
meaning that the defenders side is most of the time a few steps behind the intruder. Conse-
quently, major topological and structural changes should be applied in order to turn around
this relation.

In particular, the following list names some major issues identified for currently deployed
intrusion detection system infrastructures:

• Existent distributed intrusion detection systems are usually structured in hierarchies
or, even worse for the described scenarios, in centralised approaches and do not scale
very well for deployment in global environments.

• Organisations maintain certain relationships between each other. Based on experiences
with certain parties a member decides how much to trust information from this party.
An intrusion detection system should be able to map these relationships into its system
in an easy and straight-forward manner rather than introducing a new concept, which
should be applied to the relations between the organisations.

• The deployment of distributed security measures is often accompanied by handing over
responsibility or decision making potential to certain (often central) instances. (Very
good examples are anti-virus databases, which depend on frequent signature updates
from the anti-virus software vendor). Systems should enable parties to benefit from
collaborations in distributed intrusion detection without withdrawing power from them,
instead responsibility should be kept on the peer.

Chapter 4. Experiment Definition 54

• Some approaches for distributed intrusion detection may scale quite well (even for
global environments); however, these are very restricted to certain features of the overall
feature set requested from intrusion detection systems.

• The Internet is a world-wide network of inter-connected nodes. Consequently, isolated
IDS are not able to achieve satisfying results due to their lack of examining distributed
attack relevant information.

Over the last years, the list of enhancements towards distribution for intrusion detection
resulted in improvements of the overall results. It is believed, however, that the potential of
this idea has not yet been reached due to the lack of exchanging the gathered information on
the highest level; meaning between the organisations.

4.2.3. Potential for enhancements

Taking all these shortcomings into account, it is believed that there is great potential to
maximise the benefits of employing distribution features in intrusion detection systems. In
section 3.3 the objectives for inter-organisational intrusion detection have been discussed in
detail; however, the following list shows a selection of potential improvements in comparison
to currently available (distributed) intrusion detection systems:

• A grid based network infrastructure, which is completely based on a peer-to-peer topol-
ogy comes with significant improvements in the view of availability.

• Establishment of trust relationships between parties and mapping of those into the
software accompanied with classifying the knowledge ends up in an easily manageable
approach for protecting local information.

• The integration of many kinds of intrusion detection systems from different vendors
enables the overall system to benefit from the advantages of all detection and corre-
lation mechanisms. Additionally, a well-defined standard-based integration approach
and interface allows easy integration of new detection technologies.

• A distributed intrusion detection system approach should be highly scalable. Conse-
quently, it may be applied to a wide range of deployment scenarios ranging from small
local deployments up to Internet wide distribution of intrusion detection audit data.

Chapter 4. Experiment Definition 55

4.2.4. Experiment relevance

The upcoming approach is requested to fully support the hypothesis of finding a solution for
exchanging intrusion detection audit data across organisational boundaries in a secure and
non-reputable manner, while maintaining commercial confidentiality. The way to evaluate
the outcome can only be performed by going through the following steps:

1. The available objectives must be examined to be a correct and complete list of features
for the defined problem.

2. IOIDS must prove to satisfy all the objectives, which were worked out for such an
approach.

3. It must be made clear that there is not such an approach available to date, satisfying
the list of objectives already; meaning, that there must be a clear proof of contribution
to science by IOIDS.

The analysis has to be carried out by breaking down the objectives into atomic pieces,
which can be directly examined and measured for different approaches. As the design and
realisation of a proof-of-concept implementation was part of the project, practical experiments
shall be carried out in order to evaluate its behaviour in real-world scenarios. Comparison
with state-of-the-art approaches within the DIDS context as part of these experiments shall
prove the superiority of IOIDS over available solutions.

How far IOIDS is able to satisfy all the given ideas is examind over the following pages.
After introducing a number of related or similar projects in section 4.3 an introduction to
the idea and architecture for IOIDS is provided and linked to the corresponding chapters for
the involved components. The definition of the evaluation process in section 4.5 shows, how
IOIDS shall be deployed in experiments first of all, and how the corresponding results shall
be used for an analysis afterwards.

4.3. Comparison

In section 3.3 the objectives for an approach to implement intrusion detection communica-
tion between organisations have been discussed in detail. To date there is not yet known
any approach addressing the entirety of these objectives; however, ideas, applications and
approaches have been published, which are related or similar to the IOIDS idea or address a
certain subset of its objectives.

Chapter 4. Experiment Definition 56

Only a breaking down of the objectives into single features and the direct comparison
against similar projects on these attributes enables us to evaluate the features of IOIDS. For
these reasons the following two steps had to be performed:

1. A number of available projects, applications or approaches have to be chosen to compare
features. This choice must be performed in a way that different entities cover different
sets of features so that a collection of very diverse projects from within the context will
be explained and evaluated.

Some of these approaches only exist in theory and, consequently, IOIDS may only be
compared against them in the view of matching features. Other approaches however
come with an implementation and may this way serve as candidate for practical evalu-
ations and performance measurements or benchmarking.

2. A structured collection of broken down features or attributes have to be worked out.
They should be grouped regarding their meaning and a description for each of them
must explain its meaning in the context of the project.

The following two sections discuss these two steps in detail. Firstly, a number of projects
will be presented with some meta information for each of them. Afterwards, objectives are
broken down into textual groups, which the final low level attributes will be assigned to.

4.3.1. Representatives

In order to measure and evaluate the features, attributes, benefits and shortcomings of IOIDS
a selection of similar or related products and approaches have been chosen for comparison.
A short introduction of each of them with their context and the reason of their choice is
following.

In the context of distributed Intrusion Detection the following approaches are considered
to be worth for evaluating the Inter-Organisational Intrusion Detection System approach:

Snort – Snort is the most popular open-source network intrusion detection system available
these days. Regarding to the authors snort claims to be the de-facto standard for
intrusion detection / prevention. (Snort (2006))

Snort’s development has been initiated by Martin Roesch in 1998 and since then it
has ever grown in popularity. Due to its modular approach with its preprocessors
and output plug-in mechanism it can and has been deployed in numerous, diverse
employment environments.

Chapter 4. Experiment Definition 57

Snort in its original nature is not considered to come along with distribution features;
however, due to its wide employment as part of such scenarios it has been chosen as
one candidate to measure IOIDS on.

SnortNet – In the year 2000 Snort was extended by distribution features and a project named
SnortNet was born. For some reason the development of SnortNet has never been taken
much further and besides the initial efforts in 2000 no more versions have been released.

The author of SnortNet added distribution functionality by the use of Snort‘s output
plug-in mechanisms and ended up with an architecture consisting of network sensors,
proxy daemons and a monitoring console, which together form up a centralised, hier-
archical architecture (Fyodor (2000)). Great attention has been drawn to the employ-
ment of well-known standards, so that the Intrusion Alert Protocol (IAP) (Gupta et al.
(2001)) as transport protocol and the Intrusion Detection Message Exchange Format
(IDMEF) (Curry et al. (2002)) for Intrusion Detection Messages have been utilised.

Due to its direct link to the actual Snort IDS it proves significance for comparison
against IOIDS. Although slightly outdated, it is believed that it can serve well with its
distribution features for performing the analysis.

Prelude – Since Prelude (Vandoorselaere et al. (2004), Prelude), another Open-Source Intru-
sion Detection System, is coming with both network as well as host intrusion detection
features, it defines itself as a Hybrid Intrusion Detection System. It was brought into
being in 2001 and since then ever grown in popularity as an alternative to the Snort IDS.
Last but not least the changes in the licensing model of Snort (and thereby especially
its signatures) have boosted the importance of this IDS.

Prelude understands itself as a framework to integrate audit data from a variety of
sources rather then a plain intrusion detection system. Therefore it provides a collection
of libraries to be used when integrating an application with the framework. The final
intention is to collect data from a variety of diverse data sources into a central repository
in order to benefit from the advantages of all of them. Besides the libraries a set
of components such as event collectors and normalisers, log analysers and a syslog
integrator as well as an IDS management console (Prewikka) are provided to build up
the IDS topology.

Prelude offers useful capabilities regarding the distribution of IDS event audit data.
Fortunately, it does not only exist as a theoretical approach but also the software is
available itself; consequently, it can serve very well in practical analysis and benchmark-
ing evaluations (see section 4.5).

Chapter 4. Experiment Definition 58

AirCERT – Automated Incident Reporting (AirCERT) (Cert/CC (2006), Danyliw et al.
(2003)) is a high-level, scalable distributed system for sharing security event data among
administrative domains. In contrast to the previously presented approaches it is in-
tended to exchange IDS event data between organisations rather than inside them.
Due to its scalable approach it is able to transport any data ranging from network IDS
raw data up to entire incident reports.

AirCERT’s architecture is comprised by normalisers and sensors, collectors, the ACID
Analysis Console for Intrusion Databases and publishers and incorporates standards
such as the Incident Object Description and Exchange Format (IODEF) (Demchenko
(2003)), the Intrusion Detection Message Exchange Format (IDMEF) (Curry et al.
(2002)), and the Simple Network Markup Language (SNML) (Center (2003)). Addition-
ally, a set of libraries is provided which allows reuse and integration of other applications
with the AirCERT architecture. AirCERT is still under development and up-to-date
versions of the software packets may be downloaded from its website (Cert/CC (2006)).

AirCERT qualifies as a candidate for evaluation purposes of IOIDS due to its approach
of exchange ids event audit data across organisational boundaries. Although it is not
stressing the approach of trust relationships between these organisations very much it
has quite a commonality in the original idea for the approach with IOIDS.

Cooperating Security Managers – In the year 1996 White et. al. put the technology of
intrusion detection with its Cooperating Security Managers (CMS) (White et al. (1996))
in the deployment context of wide area networks for the first time. The peer-based
approach looks to address the gap in topology between distributed intrusion detection
systems at that time (which were mostly hierarchical) and the actual network topology
(which does not tend to be hierarchical for large scale networks such as the Internet).

The CMS topology is made up (on each participating peer) of a detection component
and a security manager, which processes information from both the local and remote de-
tection components. Additionally, it is equipped with a graphical user interface in order
to allow user feedback and interaction. Last but not least shall a so-called intruder-
handling component take care of countermeasure procedures. The major limitation of
this approach is its exclusiveness of employment for user-tracking throughout networks
in order to allow the assembling of user profiles.

Although very limited in its functionality concerning IDS features (from the today’s
point of view) the CMS with their peer-based approach and autonomously acting en-
tities show similarities to the Inter-Organisational Intrusion Detection System. It will

Chapter 4. Experiment Definition 59

be interesting to compare the two regarding their reliability and robustness features.

AAFID – The beginning of research on the Autonomous Agents for Intrusion Detection
(AAFID) (CERIAS (2000), Balasubramaniyan et al. (1998), Spafford and Zamboni
(2000)) dates back to 1998 and established a very light-weight approach for distributed
intrusion detection. A prototype (AAFID2) was released to the public in 2000, however,
afterwards, the project was discontinued.

AAFID looks to implement the idea of intrusion detection by employment of many
small, autonomous entities instead of employing a monolithic design. Thereby, its major
purpose is to provide the framework; meaning the communication platform the agents
may communicate through. Its overall architecture is made up of the agents themselves,
transceivers (considered as the communication interfaces for the hosts), monitors (the
highest-level interfaces in AAFID) and, finally, the user interface for presenting data
and interacting with the system.

The time AAFID was developed a variety of projects were researching into light-weight
approaches for distributed intrusion detection (see also section 2.4.5) - not all of them
carried the word agent in their name, but after all the initial ideas were similar to the one
of AAFID. None of these project seems to be continued to date and the Autonomous
Agents for Intrusion Detection is considered as the furthest developed of the idea;
consequently AAFID represents a concept here in general when measuring capabilities
of IOIDS.

GIDA – Quite recently (2002) Tolba et. al. started researching into the idea of intrusion
detection technology applied to grid topologies and a series of publications (Tolba et al.
(2002), Tolba et al. (2005a), Tolba et al. (2005b)) have ended up in an approach called
GIDA – Grid Intrusion Detection Architecture. GIDA looks to apply IDS technology on
existing grid architectures rather than creating a grid architecture to support distributed
intrusion detection.

The GIDA architecture comprises of Intrusion Detection Agents (IDA), the gathering
components, and Intrusion Detection Servers (IDS), which are in charge of analysing
the data and cooperating with other IDS in order to detect intrusions. An unique
feature of GIDA is the introduction of administrative domains, which supervise the
deployment of IDAs and their registering with IDSs. It integrates with the established
standards for grid services and, consequently, is built on top of the Globus Grid Security
Infrastructure (GSI) (Welch et al. (2003), Foster et al. (1998)).

GIDA shows a number of similarities with IOIDS since it also looks to combine the

Chapter 4. Experiment Definition 60

two technologies distributed intrusion detection and grid computing in one approach,
although carried out from a different point of view. It is a very up-to-date approach,
which is still under development. The authors have carried out some experiments and
performance measurements on GIDA, which enables us to mirror some of its features
against IOIDS capabilities.

4.3.2. Overview of desired features

In general the requirements for implementing inter-organisational intrusion detection system
communication have been discussed in the objectives in section 3.3. In this section we are
looking to break down these objectives into single entities – lowlevel features to allow direct
comparison between approaches.

Similar compilations of features for (distributed) intrusion detection have been created
(Liesen (2002)) and could this way contribute to assembling this overview. In order to apply
a content depending structure to the list of features, groups have been created, which the
attributes are assigned to. This way, each attribute is member of one of the following groups:

Intrusion Detection – Relating to the intrusion detection capabilities of the approach.

Distribution – Options for distributing knowledge throughout the connected domains.

Security and availability – All security issues ranging from authentication and authorisation
issues to resistance against attacks targeting the system in question itself.

Extensibility and collaborative options – Features for integration of the system in questions
with third-party products and ways of extending its functionality.

In the following sections each group is presented with its representatives; the meaning of
each attribute is explained in the context of inter-organisational intrusion detection.

Intrusion Detection

For the category concerning intrusion detection facilities as those, the following entities have
been chosen:

• Support for different detection types: Currently, there is a variety of different ap-
proaches available for detecting intrusion. Many attempts have been undertaken to
categorise these different technologies (also see section 2.3); it is commonly agreed to

Chapter 4. Experiment Definition 61

separate the two groups network intrusion detection (NIDS) and host intrusion detec-
tion (HIDS). In order for an intrusion detection system to work efficiently, it should
support the implementation of both of them.

Further separation is performed regarding the way malicious behaviour is identified -
popular candidates are signature-based or anomaly detection based approaches. Imple-
mentation of both them is considered as beneficial for the performance of IDS.

• Completeness of detectable attacks / patterns: Certain intrusion detection system im-
plementations only support detection of certain kinds of attacks. A complete solution,
however, should employ a combination of technologies in order to cover the entire set
of attack patterns.

• Correlation of event information: Certain incidents may only be identified if knowledge
from several low-level events (possibly gathered in different locations) is correlated and
analysed. An IDS should be able to perform (or at least support with) this task in
order to identify for example (locally) distributed attack patterns.

• Stateful inspection: Traffic on current networks such as the Internet is transmitted in
packets whereby large amounts of data is broken down into smaller pieces on the sender
side and assembled on the receiver side. Certain attack patterns take advantage of this
circumstance and span malicious code over several network units (such as IP fragments
or TCP segments) in order to bypass employed incident detection procedures. As a
result, an intrusion detection system should be able to reassemble this traffic in turn in
order to analyse it and identify malicious patterns. This feature should range from IP
fragment reassembling (ISO OSI layer three) up to application layer traffic reassembling
(ISO OSI layer seven).

• Reporting and user interaction: Detecting incidents of the network is only one part of
the job of an intrusion detection system. The second responsibility is the reporting of
incidents to the user. This should be supported for a variety of transmission medias
such as SNMP traps, email, pager or syslog.

Furthermore, an intrusion detection system should be able to provide structured sum-
maries of gathered information in form of reports. After all, alerting and reporting must
be carried out in a way and at a level of complexity that a user is not overwhelmed
with alerts but still gains enough information in order to react and countermeasure
appropriately.

Chapter 4. Experiment Definition 62

• Response and countermeasure: On top of detecting and reporting malicious behaviour
an intrusion detection system should support with the process of initiating reactions
in reply to certain activities (either automatically, semi-automatically or by manual
initiation of the user). For this task it often needs to interact with other components
of the network infrastructure (such as firewalls, routers, domain controllers, etc).

• Integration of variety of products from different IDS vendors: Whenever an approach
is looking to make use of third party intrusion detection system facilities instead of
implementing them itself, it should provide mechanisms to integrate with a variety of
products of different types and vendors.

Distribution

In the category distribution the following features are thought to be measurable:

• Real time capabilities: The time delay for the distribution process of information is
very critical due to the requirement of initiating appropriate reactions and countermea-
sures as soon as possible. Although a distribution of information in literate realtime
throughout the networks seems in practise impossible due to latencies in subjacent
network topologies the delay must be kept on a minimal time frame.

• Scalability: For wide deployment in different topological infrastructures the approach
should be designed in an adoptable manner regarding its sizes or frequencies. This
requirement addresses several entities within the infrastructure such as the number of
network nodes, the number of domains as well as the number of events and, thereby,
the amount of network traffic exchanged.

If the approach in question does support some kind of domains or communities, it
should also support a scaling of this feature, ranging from very small communities up
to large communities and from a small number of communities up to a large number of
communities with keeping the network traffic at a reasonable level. For example, differ-
ent layers of abstractions for the event information for different layers of communities
could be requested if a deployment scenario looks to implement a topology like three
stage approach (hierarchical), where low level, detailed event information is exchanged
locally in small, local domains; more abstracted and correlated information is exchanged
on a middle layer and rather general and very abstract event information is generated
and exchanged in a top-level layer (just in order to take a three layer approach as an
example).

Chapter 4. Experiment Definition 63

• Dynamics: Distribution domains for the event information are not static; instead they
are likely to change over time: new nodes need to be added to domains, nodes may want
to be removed from a domain or the status of a node shall be modified. Furthermore,
if inter-domain communication is supported the evolvement of new domains will affect
other domains as well. These organisational processes should be supported by the
management system of the approach either fully or semi automatically in order to keep
manual intervention on a minimal level.

• Mapping and mirroring of underlaying network topologies: In the explanations for scal-
ability the intention and likelihood for deployment of different scenarios and topologies
has been mentioned. These topologies might not only be different regarding their size
but also regarding their organisational and technical topology.

The intrusion detection system should assist with the mirroring of this network topology
in order to realise a mapping between them. This allows the user to trace events more
easily and assess their impact regarding their locality.

• Duplicate data identification and avoidance: In an environment, where a number of
nodes are processing data, deriving information and passing on information (especially
in peer based approaches with support of domains), equivalent or similar pieces of data
may occur in certain circumstances. Measures must be in place to either avoid this
behaviour a priori or identify duplicate chunks of information and initiate appropriate
reactions.

Security and availability

The features within the category security and availability range from very low level features
such as authentication and encryption up to trust relationships and their implementation. In
detail this category is made up by the following list of requirements:

• Authentication of members: Strong authentication mechanisms must be in place at
all locations, where communication between two parties is taking place and may be
intercepted for reasons such as spoofing attacks. This does not only apply to commu-
nication channels between two different peers but also between the components of the
local infrastructure of a single peer.

In order to assist this process up-to-date authentication mechanisms such as asymmetric
key authentication (public key infrastructure) should be implemented. Furthermore, it
is requested to authenticate the communication in both directions, stating that both
sender and receiver must authenticate at the beginning of the transfer.

Chapter 4. Experiment Definition 64

• Encryption: All communication channels within the overall topology must be protected
against unauthorised access using strong encryption facilities. This is due to the sensi-
tivity of information exchanged using the infrastructure. For performance reasons (after
the initialisation process of the communication) symmetric keys should be employed for
encryption purposes.

• Integrity: The entire idea of distributed intrusion detection bases on the trust given
to the information one receives from another side. A receiver must be totally sure
about the fact that the information present has been sent from the source it claims to
come from. The employment of digital signatures on the sender’s side and the message
validation using this signatures on the receiver’s side is commonly agreed to be the
up-to-date technology for these purposes.

• Public Key Infrastructure: Public key infrastructure is actually considered as a tech-
nology rather than a feature. However, due to the low level of features presented here
it is considered to give information about the security level of an approach and, this
way, assists well in the comparison process.

• Single sign on: In modern grid environments it is unacceptable to request a user for
credentials again and again if another resource is required. Credentials should be dele-
gated between the peers inside the domains in order to avoid this kind of interference.
If required and possible, credentials should be derived and exist in generations in order
to restrict the abilities for a derived or delegated credential (such as its life time or the
ability to delegate the credential on further).

• Decentralised Control: In the objectives it has been stated that for availability purposes
a distributed IDS approach should employ a peer based network topology and, this
way, guarantee a total avoidance of central instances. There must not exist a single
feature within the overall topology which may be powered-down by being successful in
disconnecting a single node or a certain set of nodes.

• Possibility of integration of different protocols and algorithms: Recent global devel-
opments with modifications in legislation in a number of countries do not allow em-
ployment of certain PKI algorithms in certain places. Different algorithms should be
integratable easily and the selection of usable mechanisms must be configurable for the
infrastructure - preferably for the domains of the topology.

Similar problems occur when drawing attention to the employment of communication
protocols for information exchange between the peers. Certain configurations within

Chapter 4. Experiment Definition 65

organisations do not allow utilisation of a certain set of communication protocols -
especially when intended to be used across organisational boundaries, saying over the
Internet. Consequently, next to the demand of easy integration of communication
protocols, these ones should be easily configurable and selectable for certain network
domains.

• Local responsibility: The attitude of the idea discussed here is a peer based approach
which allows every peer within the network to establish trust relationships with mem-
bers of their choice. For these reasons it is very important that the responsibility for
making decisions resides locally with the members. Employment of any central instance,
which makes decisions on behalf of a node would undermine this concept. Consequently,
(although domain or group policy must be in place and enforced) it is beneficial for
the approach to leave it entirely up to the local member to make decisions about how
to progress information from which source and which information to share with which
distribution domain.

• Credential mapping between administrative domains: The requirement for employ-
ment of administrative or organisational domains or groups has been discussed already.
However, the opportunity to share knowledge across these domain boundaries requires
a mapping of credentials between such. A mechanism must be in place, which enforces
and secures the authentication and authorisation across boundaries in a transparent
manner for the peers.

• Avoidance of single points of failure: In the feature decentralised control the basic con-
cept for distributing all responsibility throughout the infrastructure has been described.
This attribute stresses the idea more on the ability of the overall system to continue
its work even in case of interruption of certain members or services. It is illusive for
modern network topologies to maintain a hundred percent availability of all entities; the
more it becomes important, however, to keep the overall infrastructure running when
parts of it are interrupted or delayed.

• Authorisation and privacy: As much as the information must be secured when trav-
elling inside the networks, it must also be protected for the access on the local node.
Access control mechanisms must be in place which enforce that information may only
be accessed by parties, which are supposed to do so. Beneficial for these issues is the
introduction of several levels for security or protection for different chunks of informa-
tion; meaning, that event information of different classification are regardingly only
accessable by different sets of members or domains.

Chapter 4. Experiment Definition 66

• DoS and DDoS resistance: As much as the intrusion detection system infrastructure in
question is supposed to support with identification and reaction for incidents it needs
to be protected against attacks directed against the system itself to be of use. Denial
of Service (DoS) resistance may usually be achieved on the local node itself by error
proof implementation and employment of fallback and recovery procedures. Distributed
Denial of Service (DDoS) attacks in contrast may hardly be addressed and countermea-
sured on the local node only; instead the overall infrastructure should have measures in
place for employing fallback strategies as well as resolving and countermeasuring this
kind of attack patterns.

• Resistance against internal attacks: A waste amount of attacks are currently carried
out by internal intruders. For a grid system it is of course not particularly easy to define
the domain internal. It will finally depend on the infrastructure and organisation of the
approach; however, measures should be in place to address malicious behaviour from
trusted parties.

Extensibility

In the view of extension and collaboration facilities the following features are thought to be
of interest:

• Integration with other IDS products: No single Intrusion Detection System product is
able to integrate all features existing in the field of intrusion detection. For optimal re-
sults, however, the employment of many different detection technologies and approaches
is thought to be very beneficial for improved results. The opportunity to integrate third
party products with the approach can assist very well with this feature.

Providing a standard and well-documented interface for other products for their in-
tegration is the first step towards addressing this issue. Furthermore, the number of
products that have been integrated with the approach already indicates its usefulness.

• Standards for communication protocols: These days people become more and more
aware of the need for employing commonly agreed and documented standards in the
field of information technology in order to allow interaction with other approaches or
applications and guarantee the opportunity to access the information and carry out
interactions even in long term future.

Whenever an application provides an interface for third party approaches it must make
sure that this interface is based on well-defined and commonly agreed standards. Ad-

Chapter 4. Experiment Definition 67

ditionally, the approach should also employ standards for communication internally
between its components.

• Modularity: For reasons of re-usability and ease of maintenance software must not
come as one big chunk, but should be broken down into smaller pieces regarding their
functionality. On the one hand, the maintainability of the single components is better
than the one for the overall complex system. On the other hand, broken down modules
encourage the utilisation of certain components for other projects.

• Configurability: It has been stated that this approach should be adoptable for a variety
of diverse deployment scenarios. This requires facilities for configuring the application
in order to suit the local needs. Configuration facilities should be straight forward and
well documented. Furthermore, sample configurations should be provided.

• Heterogeneity: Deployment scenarios do not only differ in the view of size of its com-
ponents but also in the view of their nature concerning platforms, the components are
running on. Consequently, it is beneficial for the approach to support of a wide range
of different operating systems, of different data base management system (whenever a
database is employed as data repository) as well as hardware platforms.

• Integration with locally employed security measures and systems: An intrusion detec-
tion system does not provide security for an organisation in an isolated manner. Instead
it has to integrate with other security measures and infrastructural conditions, which
are either in place already or planned to be employed.

• Integration with locally deployed central management console: As previously stated the
intrusion detection system measures must integrate with other security measures on the
node. In optimal conditions this also includes the integration of the intrusion detection
system with a local management system. This local management system allows the
user to gather information from all the components of the security infrastructure and
supports bidirectional interaction with them.

4.4. Execution: Design, Architecture and Implementation

The idea of Inter-Organisational Intrusion Detection appears to be very complex and has to
address a vast number of requirements as worked out over the previous chapters. It is indis-
pensable to break down the overall system into components in order to address requirements
in working units. As shown in figure 4.1 the following components are present in IOIDS:

Chapter 4. Experiment Definition 68

G4DS - The subjacent communication platform – All low-level communication features for
the system have been encapsulated in a module named Grid for Digital Security (G4DS).
An introduction to G4DS is provided in section 4.4.1.

IOIDS - The actual DIDS component – On top of G4DS the actual platform for exchanging
intrusion detection event data is performing its job. An overview for the actual Inter-
Organisational Intrusion Detection System is presented in section 4.4.2.

IDS-IM - The modules to integrate third-party event generators – As previously stated,
IOIDS does not perform detection of intrusions itself, instead it comes as a high-level
approach for exchanging knowledge gathered by other event generators. Consequently,
mechanisms must be implemented to integrate information from these applications into
IOIDS. The idea for these Intrusion Detection System Integration Modules, which allow
adoptable integration of applications, is explained in section 4.4.3.

Figure 4.1.: High level description of overall architecture

Practically, the connected audit data generating applications (such as intrusion detection
systems or event loggers such as syslog or Windows event log) are acting as gathering com-
ponents, which report their information in a well-defined way through a plug-in-mechanism
to the Inter-Organisational Intrusion Detection System core. The IOIDS in turn is prepared
to process this information and initiate corresponding actions including the option of dis-
tributing the new information to other members of the IOIDS network. In case of a request
for distribution, a G4DS connector, which is part of IOIDS, is receiving the piece of infor-
mation together with data about the distribution domain and the options for protecting the

Chapter 4. Experiment Definition 69

knowledge from the IOIDS core and passes this on to the G4DS system, which it maintains
a connection to since boot-up time. The G4DS in turn processes the distribution and pro-
tection information and with the information about the members of the network it is able to
deliver the data to the required parties in a secure and protective manner.

The issues in each of the three components are discussed in more detail over the following
sections. The subjacent communication platform G4DS is introduced firstly, for each of the
remaining components IOIDS and IDS-IM follows a section afterwards.

4.4.1. Subjacent Communication Platform

As subjacent communication platform a secure and reliable infrastructure had to be devel-
oped, which addresses the issues concerning low-level communication such as authentication
and non-alteration. The requirement for high scalability had to be kept in mind in order to
allow deployment in local as well as large-scale environments.

A further important issue is the re-usability of this infrastructure for other projects. A
standardised and well-documented interface should be provided for applications in order to
allow easy integration. Configuration and initialisation for the network with their domains
is also important.

Responsibilities

From the list of the overall objectives for the entire infrastructure the following items are
assigned to the subjacent Grid for Digital Security:

• Establishment of a reliable communication platform

• Securing of all communication using strong authentication and encryption mechanisms

• Support of domain concepts for supporting groups within the overall network including
information exchange between those ones

• Providing a platform for authorisation

Implementation

Grid for Digital Security has been implemented by coming up with a grid architecture de-
signed for knowledge exchange, which is based and built upon well-known standards in grid
developments. Due to the difference in the nature of knowledge grids and traditional com-
putational grids, which share more physical resources rather than knowledge, the reference

Chapter 4. Experiment Definition 70

architecture and implementation (Open Grid Services Architecture (OGSA) and Open Grid
Services Implementation (OGSI) with Globus Toolkit) could not be employed directly for
G4DS. This approach was far to heavyweight and finally focused significantly on sharing
computational resources. However, there are still a large number of similarities between com-
putational and knowledge grids and much expertise from experiences in and around OGSA
and Globus could be integrated into G4DS.

In practise, the architecture and implementation for G4DS is marked by the following
attributes:

• Each node within the network is called member and is equipped with a unique member
id. Several low-level communication protocols are supported; G4DS provides an address
resolution between their addressing scheme and G4DS ids.

• The entire G4DS network is divided into so-called communities. Communities may
overlap and inter-community communication is supported depending on the community
descriptions.

• Security issues are addressed by establishing a public key infrastructure.

• Availability is provided by employment of a strict peer-to-peer infrastructure.

• Applications are integrated into G4DS as so-called Knowledge Services and are equipped
with a unique service identifier.

• All entities within G4DS (members, communities and services) are defined using well-
defined XML based descriptions.

• Access control issues are resolved using an access control matrix.

• G4DS runs as a service on linux / UNIX machines and applications may connect to
it using a client library, which encapsulates the FIFO communication and rendezvous
process. Client applications have to authenticate using asymmetric keys.

Chapter 5 discusses in very detail the design and implementation of Grid for Digital Secu-
rity. Besides a general overview about how to address aforementioned objectives in the design
stage (5.2) it also discusses implementation issues and how to integrate with connected ap-
plications (5.3).

Chapter 4. Experiment Definition 71

4.4.2. Event Exchange Mechanism

The Inter-Organisational Intrusion Detection System component is the heart of the overall
system and, this way, in charge to process new information and make decision about cor-
responding reactions including the option for distribution. These reactions should be easily
configurable for the user of IOIDS.

It must implement the interface to connect against G4DS. On the other hand, it should
be able to integrate a number of third party audit data generators. For these reasons, it has
to provide a standardised and well-documented interface in the first place, and, furthermore,
needs to provide modules to support a number of those products from the start on.

Besides the integration of locally deployed third party event generators it must process, han-
dle and store information from other peers of the IOIDS network. A central data repository
has to be put into place, which in turn must be able to deal with event data of applications
of very different types by maintaining information about the origin and source as well as
protective attributes of the knowledge chunk.

Responsibilities

The following list of broken down objectives may be directly assigned to the IOIDS component
of the overall topology:

• Central storage of event data

• Processing of information and decision making based on user preferences

• Classification and protection of audit data

• Integration and normalisation of third-party event data

• Implementation of authorisation mechanisms

• Mapping and processing of G4DS credentials and identifiers

Implementation

The Inter-Organisation Intrusion Detection System component has been implemented with
the concept of G4DS as communication platform and is this way directly depending on
such. It provides mechanisms and configurations for a event database, which serves as a
central repository for all event data from any type of application. Communication protocols
between peers have been developed with focus on standards for exchanging IT related incident
information.

Chapter 4. Experiment Definition 72

In particular, the IOIDS implementation is described by the following features and at-
tributes:

• An XML based IDS specific event database has been employed as central audit data
repository. This approach normalises all event data into a common event core; remain-
ing information is maintained in application specific database extensions.

• The data engine bases its decisions on policies, which are given in an XML syntax by
the user. Sample policies for the data engine have been created.

• Information within IOIDS is classified using 10 different classes. These classes allow
control of distribution to certain domains.

• Distribution domains for IOIDS may be either a single member, an entire community
or all known members of a service.

• Besides the distribution of new information a node may also request information from
other nodes by defining certain parameters and sending a knowledge request.

• All communication between IOIDS peers is performed using XML encoded messages.

In chapter 6 all the details about the IOIDS design, architecture and implementation are
provided. High-level information about issues such as database backend implementation and
communication protocols (section 6.2) are discussed as well as low-level implementation issues
such as G4DS connectivity and internal data structures (section 6.3).

4.4.3. Data integration from third party event generators

IOIDS itself is an approach for the purpose of exchanging intrusion detection event data
rather than gathering this data. Consequently, IOIDS must be able to integrate and process
information from other so-called third party event generators. For this purpose a modular
mechanism has to be put into place, which allows easy integration of new applications.

Practically, there are two ways of integrating data from those applications:

1. A new event within the third party event generator is passed on to the IOIDS using a
local procedure call, which results in direct processing of this information.

2. All event information from any third party event generator is mirrored into a cen-
tral database, where the IOIDS may pick up the events using trigger technology and
processes the information afterwards.

Chapter 4. Experiment Definition 73

Both approaches require a normalisation of the data on the third party application side.
With SoapSy (see section 6.2.3 for details) a database has been developed, which is able
to store event information from very different applications in a normalised way by avoiding
loss of information due to employment of application specific extensions. The integration of
event information from third party applications is implemented using the SoapSy approach
in conjunction with trigger mechanisms.

Responsibilities

From the collection of objectives the following list may be applied to the integration facilities
for third party event generators:

• Translation between application specific data format and the IOIDS common data
structures

• Notification in case of new events

Implementation

The implementation for the third party integration mechanisms comes in two parts, namely:

1. An output plug-in (or similar approach) for the third party application, which enables
this one to transfer event data into the normalised IOIDS data repository.

2. A module for each application inside IOIDS, which enables IOIDS to understand the
extension information for the third party events.

The output plugins may be implemented without any connection to IOIDS, which appears
to be another advantage of the approach. Some information about these plugins are discussed
in the experiments and analysis part in section 7.3.

The implementation of modules for each application to be understood within IOIDS are
part of the project. Without such modules, IOIDS could only process the common core
information by leaving the application specific extension information behind. The integration
of such IOIDS extension plugins is realised using modules with the following attributes:

• New events from any third party event generator are realised by IOIDS using trigger
mechanisms.

• For each third party application there must exist one extension module.

• The plugins support fetching of application specific information as well as their storage.

Chapter 4. Experiment Definition 74

• The corresponding plug-in is loaded dynamically determined by the event type given
in the core event.

• Due to the generic approach of the datatypes within IOIDS and their close relation
with the database design extension plugins may be implemented easily for supporting
the mapping.

The design and implementation of this integration mechanism is discussed as part of the
IOIDS design and realisation. Conceptual issues are addressed in section 6.2.3 whereby
attention to implementation of the integration is drawn in section 6.3.2.

4.5. Analysis and Evaluation

The analysis and evaluation of the Inter-Organisational Intrusion Detection System approach
as presented appears to be difficult due to the lack of similar approaches in the area. Con-
sequently, only several sub sets of the features of IOIDS may be mirrored against available
approaches and after all a picture may be drawn, which represents the overall feature set.

The evaluation of IOIDS is carried out in the following two steps:

1. Analysing of features of similar or related approaches by interpretation of publications
and documentations about such ones. This way the supported features of such ap-
proaches and applications may be mirrored against the ones of IOIDS. For this step of
the evaluation process the entire list of available products to date from section 4.3.1 is
integrated using the attributes listed and explained under section 4.3.2.

2. A practical evaluation in a laboratory environment shall examine, what results IOIDS
is able to achieve in practise. For this step only a subset of the available approaches
from section 4.3.1 will be used. Although IOIDS has not been developed with major
focus on performance part of this step will draw attention to achievable results in the
context of benchmarking.

The requirements and idea in detail for each of the two steps is explained in the following
two sections.

4.5.1. Comparison of approaches

Loads of research is going on in the area of network security and intrusion detection in
particular. Not all efforts are resulting in an application or some of them have not yet reached
this status. However, publications and documentations draw a picture of the approach in

Chapter 4. Experiment Definition 75

question, which provides enough information to perform a comparison based on features as
they are described.

Execution

A list of low-level features, which are thought to be important for a scalable distributed
intrusion detection system infrastructure has been presented in section 4.3.2. This list will
be applied to a matrix; each of the approaches introduced in section 4.3.1 will appear with a
column in the given matrix. By examining literature about the approach in question such as
publications, documentations or published test results the corresponding value will be applied
in the given cell of the matrix. The following values may appear inside the matrix:

Y – Yes, this feature is supported.

N – No, this feature is not supported.

N.A. – Not Applicable; the feature in question cannot be applied to the approach.

In the case of a requirement of further explanations for a certain value, footnotes will be
applied in order to eliminate uncertainess. The option for Not Applicable is required due to
the aforementioned effect that certain projects are only supposed to cover a certain subset of
features. Attributes outside this set will be marked as N.A..

The execution of the literature based analysis of IOIDS is provided in section 7.2 of the
experiment and analysis chapter.

4.5.2. Experiment

The practical part of the analysis shall show the applicability of IOIDS to real networks and
shall examine, whether the implementation holds up with the features described for IOIDS
in the theoretical analysis.

Due to the different components of the overall architecture it is reasonable to execute the
experiment in several stages; each analysing a different set of modules. The three stages for
the experiment of IOIDS are:

1. Infrastructure experiment (G4DS)

2. IDS event exchange evaluation (IOIDS)

3. Integration with data engine

Chapter 4. Experiment Definition 76

The setup and execution plan for each of them is discussed in the following sections.
For the execution of the experiment a laboratory environment has to be set up. Figure

4.2 pictures the proposed topology in its simple structure to be used for stage one of the
experiment.

Figure 4.2.: Proposed network topology for experiment - stage I

In detail, the experiment topology is marked by the following attributes:

• Three communities are present in the topology; their identifiers are C001, C002 and
C003.

• Five members are present; each of them responsible for different tasks. In detail these
ones are:

1. Member M001 is member of the communities C001 and C002. For both of them
it as acting as a community authority. Furthermore, it should act as a gateway
between the two in order to pass messages on from one to another.

2. Member M002 is member of the communities C002 and C003. For community
C002 it holds additionally the authority role. M002 is the gateway between the
two mentioned communities.

3. Member M003 is only present in community C001. It employs the role of an
authority for this community.

Chapter 4. Experiment Definition 77

4. Members M004 and M005 are only present in community C003. Both them are
acting as authorities for this community.

• Low level communication is provided by a TCP/IP based network as used in the Inter-
net.

The given network infrastructure is a fully connected G4DS network; meaning that every
node is able to communicate with any other node from the topology. Routing on application
layer through the network should be provided by the two gateways M001 and M002.

For stages two and three certain additions have to be applied to the topology. Intrusion
Detection components have to be deployed at certain locations as well as receivers for knowl-
edge have to be determined (receivers will be reading from the network only; they are not
supposed to contribute knowledge).

Stage I - G4DS

In Stage I the subjacent communication infrastructure Grid for Digital Security (G4DS) will
be evaluated. Messages will be traced throughout the network in order to check whether
population and routing are working properly. A small and light-weight sample application
examines the attributes of G4DS without causing too much overhead on the knowledge grid
application layer. Last but not least G4DS‘ protection and availability mechanisms will be
examined using penetration methodologies. In detail, the experiment shall be carried out the
following way:

Sample application A sample knowledge service in form of a simple chat application mak-
ing use of the G4DS communication platform examines features of G4DS by avoiding big
overheads due to its simplicity. The sample application is marked by the follwing features:

• The new service is valid for all available communities C001, C002 and C003.

• Any node may send a message at any time.

• Distribution domains of messages may range from single users through all members of
a community up to all known members of the services on the local node.

• Plain text messages will be used without any parameters. (This has to be stated in the
service description)

• Only nodes, which are currently connected to the service will receive the messages.
Otherwise data will be dropped - due to reasons of simplicity there is no need for the
recovery of such messages.

Chapter 4. Experiment Definition 78

A service description has to be developed for this knowledge service and has to be applied
to all nodes of the infrastructure. At least two nodes have to be chosen for acting as service
authorities for the application.

Messages shall be exchanged from all nodes to all nodes within the topology. The execution
must consider the following requirements:

1. Messages must be delivered from each G4DS node to each other. (as long as the receiver
has the service in question started up and is connected to G4DS)

2. G4DS access control must apply rules on certain nodes, which prevent messages from
being passed on to the connected chat application. (this way, messages will still reach
the G4DS, as required in item 1, but they will not reach the given application)

3. Data of wrong type shall be attempted to be sent to a node (XML data or binary
encoded data).

After carrying out the given steps in an initial step, they will be re-invoked again and again
under penetration circumstances.

Penetrate The penetration test of the G4DS network shall cover the following attack pat-
terns:

Sniffing – Data shall be intercepted at a node within the network which is not the final
receiver of the message. Sniffing shall be performed on both layers:

• G4DS Layer – A router or so-called Trusting Community Gateway (TCGW) shall
intercept messages and try to recover data carried inside them. This must be
carried out by implementing extensions to the G4DS implementation.

• TCP/IP Layer – A generic network sniffer such as Ethereal or Tcpdump shall be
placed at a location inside the network, which enables listening to traffic, which
the node is not the destination for. By examining parameters and raw data within
the several TCP/IP protocol stack layers it shall be attempted to draw conclusions
from the content transmitted.

DDOS - (Distributed) denial of service – By the use of (distributed) denial of service at-
tacks such as flooding and the like it will be attempted to prevent a certain node or a
certain set of nodes from continuing their work. Again, these attacks will be carried
out on two layers:

Chapter 4. Experiment Definition 79

• G4DS Layer – On G4DS layer it is attempted to break down the G4DS service
on the node in question. This may either be achieved by flooding the victim with
G4DS messages (likely in large sizes in order to request loads of processing time
on that service) or by introducing DOS vulnerabilities into the G4DS code, which
enables easy shutdown of the node in question. Both approaches will require code
modifications for G4DS.

• TCP/IP and OS Layer – For this option it is not attempted to attack the G4DS
service on the node in question but the operating system or other resources on
the machine itself. For these reasons well-known attack patterns for the operating
system may be used, which will prevent it from working; or the node is flooded
with large network units in order to prevent it from or slow down the processing
of network traffic.

For these attack patterns it is not of most interest how much the single node is resistant
against DDOS attacks, but much more in which conditions the overall infrastructure is
able to maintain its processing and distribution of information.

Spoofing - With this attack pattern a node shall attempt to insert information into the grid
system by pretending to be a different node. This task will be carried out on both
layers again; firstly by attempts of spoofing G4DS member information and, secondly,
by attempts of spoofing attacks on TCP/IP layer such as IP spoofing.

It shall be examined, whether G4DS is able to work out that the traffic has not been
initiated at the node it claims to be sent from.

Stage II - IOIDS

Stage two of the practical evaluation process deals with the core functionality of the IOIDS
knowledge service. The following issues shall be addressed in this stage:

• Is the communication within IOIDS using the Grid for Digital Security platform per-
sistent and performant enough? It has to be examined, whether the communication
infrastructure supports required distribution domains appropriately, meaning that mes-
sages are delivered either to single destinations or to a certain set of destination nodes
(such as all members of a community) in reliable and performant way.

• The persistence of the IOIDS system shall be evaluated; meaning whether the database
type as well as the database model are adequate for storing the processed informa-
tion. Additional attention has to be drawn to the possibility of storing communication

Chapter 4. Experiment Definition 80

platform dependent parameters such as the sender of a message or the corresponding
community, the knowledge chunk in question was travelling in.

• The access control mechanisms provided by G4DS may be utilised in order to prefilter
content for the IOIDS service. Access control policies should be implemented and their
triggering within G4DS must prove their applicability.

For execution of stage two of the experiment the IOIDS implementation as discussed in
chapter 6 will be deployed to the laboratory environment as pictured in figure 4.2. The
following changes have to be applied to the existent infrastructure from phase one:

• The IOIDS application has to be deployed on every node of the G4DS network.

• As part of this process a database for persistence of audit data has to be deployed for
each of the IOIDS nodes. They may be installed on the same node as the IOIDS service
is running on.

• A service description for the IOIDS application is created as part of its implementation.
This description has to be deployed to the G4DS system on each of the nodes, where
IOIDS has been installed on.

• IOIDS access control rules have to be developed and merged with the rule set already
deployed for the G4DS system.

• The dataengine is configured in a way that every incoming local event is distributed to
all known members of the service. Finer granularity on the rules will be provided in
the third stage.

After applying the aforementioned changes to the laboratory environment the following
steps have to be executed and recorded in cycles again and again in order to cover the use
cases discussed afterwards:

1. Make sure, the network is isolated in a way that no unrequested data may tamper with
the test results.

2. Check and record the status of the event databases on the nodes of the infrastructure.

3. Check and eventually adjust access control rules on the nodes of the infrastructure.

4. Make sure IOIDS services are running on all nodes and connected successfully to
database backend and the G4DS communication platform.

Chapter 4. Experiment Definition 81

5. Manually insert events into the event database which should be triggered and picked
up by the IOIDS system afterwards.

6. Check and record the status of the event databases on the nodes of the infrastructure
and evaluated changes, which have occurred since the check before the test.

7. Check event logs of both the G4DS system and the IOIDS system and evaluate the
information in order to work out, how many and which messages have been passed on,
have been sent or have been received.

The events for the experiment in this stage will be created manually in form of XML
documents to be sent to the database, which allows full control over their content. Changes
to those events and the access control rules for the G4DS subsystem have to be applied in
order to cover the following use cases (use cases have to be combined with each other):

• An event triggered from the database distributed to all nodes of the network.

• An event is sent off to a distribution domain but not accepted by a few destinations
(access control).

• A single event with no related events.

• An event, which carries further related events with detail information.

• Several grades of details should be provided in the exchanged event data (meaning some
of them contain information about attacker, victim, etc others in contrast do not).

• The same event is sent and received several times. Both events are identical including
timestamp information.

• The same event is sent and received several times. Both events are identical apart from
their timestamp information.

Besides the examination of messages being delivered as they are supposed to, measures
should be taken to give answers to performance issues. These include:

• How many events may be processed within a certain time frame?

• How much time does it take between an event occurring on the first node and being
integrated in the data pool of the last node.

• How much data is carried within the messages. Measures have to be taken for:

Chapter 4. Experiment Definition 82

– The raw event data

– The IOIDS event message

– The G4DS message

This will allow us to make a statement about the data overhead caused in each layer.

Stage III - Data engine

In the last stage of the practical IOIDS evaluation process the complete feature set of the
overall system shall be examined. This way attention will be drawn to the following issues:

• The audit data repository with all its features for triggering and picking up new events
including their third-party extension information.

• Full functionality of the IOIDS dataengine which includes applying of different values
for protection of new event information as well as population of audit data to different
sets of destinations.

• Installation of members within the network which will pass event information received
within one community into another community.

• Full integration and evaluation of access control mechanisms including the support for
classifications of knowledge chunks.

In order to execute the stage III experiments further extension have to be applied to the
laboratory environment (see figure 4.2) on top of the changes from stage II. In detail these
extension are:

• Installation of third-party event generators, which will contribute real world audit data
for the laboratory environment.

• Implementation, integration and deployment of IOIDS modules for the third-party ap-
plications in question in order to process their application specific information.

• Development and deployment of IOIDS dataengine policies, which define detailed reac-
tions to certain events occurring on the node.

• Development of access control rules in order to support the filtering of messages based
on message classifications and their integration with existent G4DS access control mech-
anisms.

Chapter 4. Experiment Definition 83

• Installation of invader stations and applications within the laboratory network, whose
appliance will trigger certain events on the third-party applications.

Furthermore, for reasons of comparing features and shortcomings of IOIDS with the ones of
existent technologies, those ones have to be deployed and configured as well. For the practical
analysis the following products will be installed for this purpose:

• Prelude

• SnortNet

Both them have been discussed in more detail in section 4.3.1 in the overview of representa-
tives. They have been chosen for laboratory tests due to their popularity and the availability
of implementations for them. They have to be deployed and configured, event databases have
to be set up for them.

It is essential, that all tests are driven under exactly the same conditions for each of the
three approaches. In order to avoid interference between the approaches, however, they
should not be running all together at the same time. Consequently, before each test run, the
laboratory environment has to be brought into a consistent and well-documented state. One
of the three approaches will be deployed and the test will be executed; afterwards the state of
the environment has to be rolled-back for the next approach in order to guarantee identical
conditions.

In detail, the following steps should be executed for each use case (which will be described
afterwards):

1. Choose the first approach for executing the test.

2. Make sure, the network is isolated in a way that no unrequested data may tamper the
test results.

3. Bring the laboratory into a well-defined state and record the status.

4. Check and record the status of the event databases on the nodes of the infrastructure.

5. Check and eventually adjust access control rules on the nodes of the infrastructure (if
supported for the approach in question).

6. Make sure all required services are running on all nodes.

7. If required start-up third party event generators.

Chapter 4. Experiment Definition 84

8. Penetrate the network with the prepared invader tools.

9. Check and record the status of the event databases on the nodes of the infrastructure
and evaluated changes, which have occur ed since the check before the test.

10. If available check logging information of the approach in question.

11. Roll-back the entire laboratory environment to the state described in item 4 and pro-
tocol the status.

12. If more approaches are available, deploy the next approach and continue the test with
item 5.

Afterwards, results have to be processed and normalised in a way that enables us to compare
between the three approaches.

The use cases for stage III should cover the following conditions:

• The infrastructure is fully functional and shall handle a real-world like amount of data.

• The network is penetrated significantly in order to generate a high volume of audit
data.

• Certain nodes within the infrastructure are not or not fully functional. This may either
be achieved by DOS attacks or simply disconnecting the nodes in question from the
network.

• All nodes within the infrastructure have established equal trust relationships between
each other.

• Nodes within the network want to distribute different levels of information to different
distribution domains.

• Nodes within the network want to process information from different sources differently,
meaning to accept and store knowledge from group a but dropping information from a
certain group b.

Benchmarking

The benchmarking part of the experiment shall examine certain performance features of the
IOIDS system in comparison to similar approaches as described in stage three of the practical
evaluation (4.5.2). IOIDS only provides a proof-of-concept implementation and, this way, has
not been developed with major attention on performance issues. This way, the benchmarking

Chapter 4. Experiment Definition 85

part does not make up a big part of the experiment and is rather been executed as part of
stage three. It is rather a structured overview of results gained from this stage.

Using those results, the following information should be compared for the three approaches:

• How many events may be exchanged within a certain time frame?

• How much time passes from the detection of an event on one node and the integration
of this information on the destinations?

• How much network traffic is produced by the approach in question?

4.6. Conclusion

With the given information in this chapter an overview has been laid out of the architecture
and implementation for the proposed Inter-Organisational Intrusion Detection System infras-
tructure. Proposed modules have been separated and introduced including their references
for detailed information about each of them. Last but not least, a structured methodology has
been described, which will be used in chapter 7 for carrying out the analysis and experiments.

In the upcoming two chapters the involved modules will be explained in detail. Firstly,
the subjacent communication platform Grid for Digital Security is discussed in chapter 5.
Afterwards, the actual Inter-Organisational Intrusion Detection System application, running
on top of G4DS, is discussed in detail in chapter 6. Integration mechanisms for third-party
event generators are discussed as part of this chapter in section 6.3.2.

Following these two chapters the analysis part (chapter 7) will draw attention to the analysis
process itself and the execution of the experiments. Features of IOIDS will be examined and
compared to the ones of similar or related approaches as described in this chapter.

Chapter 5.

Grid For Digital Security (G4DS)

5.1. Introduction

This chapter provides detailed information about the way, Grid for Digital Security (G4DS)
is operating. Aligned to the development process the remarks here are broken down into
architecture and implementation. The Architecture bit is providing kind of a general overview
of the G4DS approach, and this way visualises, how components interact and how the whole
system is hold together.

The Implementation section in contrast draws attention to the approach in more detail
and this way provides information about employed implementation patterns; finally it shows
how the complexity of G4DS could be broken down into pieces and how each of the modules
was realised.

5.2. Architecture

As already outlined in the objectives (section 3.3.1), modularity and re-usability have been
major issues for the design of G4DS. A communication platform was to be put into place,
which implements a secure and reliable information exchange platform and provides interfaces
for its use to applications, the so-called services.

No matter what kind of data the connected service is willing to exchange, G4DS is able to
transport it. Consequently, G4DS is able to carry all of the following types of data:

• Unstructured / unknown text data

• Structured text data such as XML or the like

• Binary data

This could only be achieved by employment of strict separation of G4DS control information
and payload data. G4DS itself does not care about the data it is carrying; due to encoding

86

Chapter 5. Grid For Digital Security (G4DS) 87

and encapsulation mechanisms (see section 5.3.2), it is completely flexible from this point of
view.

5.2.1. Overview

In order to understand the mode of operation of G4DS, Figure 5.1 provides an overview,
which visualises G4DS as a black box. Major attention has been drawn to Configurability of
G4DS; hence, to enable each node to configure its G4DS instance for its needs.

Figure 5.1.: G4DS Base Layout

The following documents are processed by the G4DS system:

• Configuration Files: The starting point for all input is configuration files, which tell
the G4DS core about the required descriptions to load up into the system at booting
time. (see section 5.3.3 for details on configuring and setting up G4DS)

• Member Descriptions (MDL), Community Descriptions (TCDL) and Service Descrip-
tions (KSDL): The objects, G4DS is dealing with are either of the type member, commu-
nity or service. For each instance of them an XML-based description must be created

Chapter 5. Grid For Digital Security (G4DS) 88

which is then processed by the G4DS description processor. Detailed information is
provided for the descriptions in section 5.2.3 and their processing in section 5.3.3.

• Policy Files: An access control mechanism has been implemented for G4DS. It bases
its decisions on knowledge from local managers and the policy files. The XML based
policy files are processed and its information is transformed into ordered rules for an
access matrix. More information about access control is provided in section 5.3.4.

For reasons of persistence the G4DS system is connected to a database, in which all de-
scriptions are stored and relations are maintained. This database is totally unlinked from any
database the connected application might employ for its needs. Finally, a number of different
services may connect to the G4DS system in order to make use of its communication facilities.

Besides the configuration files all the aforementioned information and communication is
XML encoded. This way it may be easily processed into a DOM (W3C) tree, which makes the
given information easily accessible. As outlined in Figure 5.1, the services connect to G4DS
using FIFOs1, which are accessible via operating system path names. Security and integrity
are ensured here by employment of private / public key authentication and encryption. (see
also section 5.3.6)

Same way the connection between the peers is secured by employment of private / public
key authentication and encryption. However, the connection between them is established
using well-known network protocols, such as the XML based SOAP2 protocol (Box et al.
(2000)) or generic TCP/IP3 sockets (Stevens (1994)). In fact, other transport protocols may
be integrated with G4DS easily using a plug-in mechanism. (see section 5.3.9 for details.)

5.2.2. Database layout

Each node has to store its on view of the G4DS topology. In order to make all the different
entities with their relations between each other persistent, a database as media is most
appropriate. Consequently, a database layout has been developed, which is able to picture
the entire network structure from the view of a certain member. Figure 5.2 visualises the db
layout; afterwards the components are explained in details.

The central entities in the given layout are Communities, Members and Services. Class
Communities maintains all information about Trusting Communities, Members about mem-
bers and Services about applications or so-called knowledge services. The remaining entities

1Fist in First out - information access approach, where messages are processed in order of their arrival
2Simple Object Access Protocol
3Transmission Control Protocol / Internet Protocol - commonly used protocol for establishing session based

network connections on layer 4 of the TCP/IP protocol stack

Chapter 5. Grid For Digital Security (G4DS) 89

Figure 5.2.: G4DS Database Layout

Chapter 5. Grid For Digital Security (G4DS) 90

are supposed to support with the relations between the three major tables or add some
additional information.

Membership and Authorities

The most important role for communities and members as well as for services and members
is the one of membership. Since these relations are always n:m relations (e.g. each member
may be member of different communities as well as each community has several members
belonging to it) an additional table had to be introduced for each relation. This way, the
following tables are in place:

CommunitiesMembers – Maps the membership of members (nodes) to communities.

ServicesMembers – Maps the direct affiliation of members to services.

ServicesCommuntities – Instead of subscribing each member of a community to a service,
the entire community might be subscribed to it. This table is responsible to map this
behaviour.

Additionally, the tables CommunitiesAuthorities and ServicesAuthorities have been intro-
duced. They maintain the special role of a member to be an authority either for a community
or for a service.

Algorithms and Credentials

Since a public key infrastructure (PKI) has been employed for the G4DS network (see section
5.3.2 for details of securing the communication channel between G4DS nodes), there is a need
to store public keys of remote members in order to authenticate them as well as validate the
integrity of messages. However, public keys do not come as a isolated piece of information,
there are often accompanied by a username. Furthermore, they have been created using a
certain encryption algorithm and are only valid for this one. All these pieces of information
(public key, user name and algorithm) are integrated in a table called Credentials. The name
of the algorithm indeed is not stored simply as a string but as a reference to an Algorithms
table. This way, it is ensured, that names for algorithms are normalised.

Another issue is arising when focussing on authentication and related security measures,
namely the credentials on the node itself. Same way, they have to be connected with a certain
algorithm. Additionally to the public key, as maintained for remote nodes, a private key has to
be stored. These pieces of information are integrated in the table called PersonalCredentials.
Again, the algorithm is identified by a reference to the Algorithms table. There is no need

Chapter 5. Grid For Digital Security (G4DS) 91

to reference any member since these credentials are intended to be used as properties of the
local node only.

In the descriptions for trusting communities it was pointed out, that a policy has to be
brought into being, defining how to communicate; meaning, which protocols are utilised and
which algorithms may be used within the community. Exactly this behaviour is mirrored
with the table CommunityAlgorithms for the relation between communities and algorithms.
It defines, which algorithms are utilised within the community; hence which algorithms have
to be supported by each node, which is member of this community, and which each node has
to provide credentials for.

Protocols and Endpoints

Many different protocols (such as SOAP, HTTP, SSH) are to be used for G4DS. In the
Protocols relation the local node stores, which protocols it is aware of. This way, names of
protocols are normalised and other tables do not store the name of a protocol directly, but
reference the corresponding entry in the Protocols table.

The relation Endpoint finally puts all the information into relation. In fact, it provides some
kind of address resolution for G4DS system. A simple one-to-one resolution for addresses,
as employed for the Internet naming system DNS (Postel (1994)) may not be utilised due
to the different protocols communities and nodes may employ. E.g. an address for a SOAP
connection is made up by a URL, a SSH connection, however, will simply point to a certain
IP address or DNS name and a TCP port. The table Endpoint is able to deal with the
problem of different protocols, and additionally, integrates the information about credentials
to be used for the certain node and certain protocol. Finally, one entry in the Endpoints
table gives information, how a certain node through a certain community using a certain
protocol may be reached; hence, which address and which credentials are to be used for this
constellation of parameters. (The employment of communication facilities themselves are
explained in detail in section 5.3.2.)

Finally, a table called CommunitiesProtocols is maintained, which, as described above for
the table CommunitiesAlgorithms, maps knowledge about community policies. In fact, it
says, which protocols are allowed to be used for inside community communications; hence,
which protocol has to be implemented by each of its members and this way, endpoints for
which protocols must be provided by them.

Chapter 5. Grid For Digital Security (G4DS) 92

Services

G4DS has been introduced to support applications by providing a reliable and secure com-
munication infrastructure. Applications using G4DS are called services. G4DS must have
certain knowledge about the connected services in order to carry out its role.

For these purpose a relation Services has been introduced which maintains all necessary
information about services. The three additional table ServicesCommunities, ServicesMem-
bers and ServicesAuthorities maintain the relations involving services in the corresponding
manner as described for members and communities just before.

5.2.3. Descriptions

As outlined all entities within G4DS, namely members, communities and services, are de-
scribed using XML syntax. Each description must be provided in a single file. In order to
unify all descriptions an XML Schema4 (W3C (2005)) has been developed for each dialect.
The following sections discuss the description of each entity in detail.

Member Description

One member description has to provide all information related to a single member within
G4DS. On the one hand, this is made up by general information about the member, such as:

• an unique member identifier

• a version for the description

• a name of the node

• the date of this version of the description

• some more information about organisation and geographical location of the node

On the other hand, information must be included in the description, which allows the
member to be contacted by other members. These include:

• one credential (public key) for each algorithm, this node is supporting

• a list of communities, this member is subscribed to

• a list of endpoints for each community, telling other members of the community, how
to contact this node

4Defines the vocabulary for XML documents. (Alternative to DTD)

Chapter 5. Grid For Digital Security (G4DS) 93

All this information together is enclosed in member description message (MDL) tags, which
defines it to be a member description. A sample member description and the corresponding
XML schema are provided on the resources CD.

Community Description

Respectively, one community description holds all information related to a single Trusting
Community. Again, the kind of information in there may be divided into general information
and information supporting the operability of G4DS. The part of general information is made
up by:

• a unique community identifier

• a version for the description

• a name of the community

• the date of this version of the description

• some more information about organisation and geographical location of the node

The operational information in contrast include:

• the communication protocols to be used with this community; hence, which each mem-
ber has to support in order to operate with the community

• the authentication and encryption algorithms, which are supported within the commu-
nity

• general information about the authorities for this community and, to a certain extend,
how they are to be contacted via G4DS

• information about so called community gateways; meaning, via which nodes knowledge
may be passed into this community from other communities and vice verse

The information from the given lists is all put inside a community description XML tag,
which identifies it as such a one. The sample description for a community and the corre-
sponding XML schema are provided on the resources CD.

Chapter 5. Grid For Digital Security (G4DS) 94

Service Description

Service descriptions are put in place to describe services and how they interact within G4DS.
General information for services are:

• an unique service identifier

• a version for the description

• a name of the service

• the date of this version of the description

• information about real world contact opportunities for the service

The set of information on the operational level is made up by:

• ID, name and description for each supported message format for the service (this ad-
dresses the application level message formats, e.g. plain text messages for a simple chat
or IOIDS for a service exchanging computer incident related material)

• general information about the authorities for this service

An example of a service description for a simple chat serviceand the corresponding XML
schema are provided on the resources CD.

IOIDS as one service of G4DS discusses the idea of services from the view of the client
application and, this way, provides more information about service descriptions in section
6.3.1.

5.2.4. Access Control

In the objectives (section 3.3.4) the requirement for a strong and reliable access control
mechanism for G4DS has been discussed in detail. It must support with the protection of
information in a simple and configurable manner whilst allowing population of knowledge to
the highest possible grade.

The access control system of G4DS is based on rules and chaining of rules. Similar ap-
proaches have been implemented for packet filtering firewalls such as the Open Source packet
filter Netfilter / IPTables. (Netfilter (2005))

In principal, three types of objects are present in the permission model:

1. Actors

Chapter 5. Grid For Digital Security (G4DS) 95

2. Targets

3. Operations

Actors perform certain actions on certain targets. Mapped into the G4DS system, actors
are always members. Targets might be either members, communities or services. Operations
are represented by strings, which are organised in a hierarchy. An example for the hierarchies
of action strings is given for the control messages for the member sub-control system:

• g4ds (describes all actions for G4DS)

• g4ds.control (describes all actions for the control system of G4DS)

• g4ds.control.member (describes all actions for member control subsystem of G4DS)

• g4ds.control.member.read (describes all actions for member control subsystem of G4DS,
which require read access)

• g4ds.control.member.read.requestmdl (is the action string for requesting a member de-
scription)

Rules may either apply to an action in particular or to a set of actions using the group
identifier of any level within the hierarchy. For each rule a rule identifier has to be defined.
Corresponding to this key, the rules are put in order at processing time. As important the
order is for packet filtering firewalls, it is for G4DS access control. Each action could hit
several action strings from the provided policies; so, the first rule suiting the given action
string, actor ID and target ID is applied.

The rules are defined in so-called policy files which must contain a well-defined XML based
representation of rules. Their structure is explained in further detail in section 5.2.4 and their
processing and application in the implementation of Access Control in section 5.3.4. After
processing the rules at boot-up time of G4DS, they are kept in memory in form of an access
matrix for easy and quick access.

Matrix and ordered list

After processing the policies, the rules are kept in memory by G4DS in structure of a matrix.
Regarding to Figure 5.3 the X-Axis of the matrix represents the actor, the y-axis is occupied
by the target. The value of x and y is an ordered list of couples, made up by an access control
action string and an access control reaction.

Chapter 5. Grid For Digital Security (G4DS) 96

Figure 5.3.: Two stages access control

For validating any access using G4DS access control, all three parameters have to be
provided, actor, target as well as action string. This way, the appropriate list within the
matrix may be determined and is iterated, whereby each action value within the list is
compared against the given action string. The corresponding reaction ID will be returned to
the user of access control consequently.

Policies

As outlined in the access control introduction, the policies for its configuration have to be
provided in XML format in so-called policy files. The policies have to be well formed; hence,
aligned to the XML Schema for G4DS access control policies. The XML schema may be
found on the resources CD. Recapitulatory, a set of policies needs to contain roles (which
may be of any of the types, actor role, target role or operation role), the grouping for roles
and finally the rules, putting all the information together. Rules are grouped in Rulesets.
Listing 5.1 illustrates a simple example of policies for defining a group of trusted actors, which
shall be allowed to any action on the local node.

Listing 5.1: Simple example for Access Control Policy¨ ¥
g4dspo l i cy

r o l e s

r o l e s e t (∗ type = ’ a c t o r s ’)

Chapter 5. Grid For Digital Security (G4DS) 97

r o l e

name = t r u s t i e s

d e s c r i p t i o n = Actors I would a l low everyth ing .

r o l e s e t (∗ type=’ t a r g e t s ’)

r o l e

name = a l l t a r g e t s

d e s c r i p t i o n = Al l t a r g e t s

groups

group

rolename = t r u s t i e s

r e p r e s e n t a t i v e s

r e p r e s e n t a t i v e (∗ type=’member ’) = M001

r ep r e s e n t a t i v e (∗ type=’member ’) = M002

group

rolename = a l l t a r g e t s

r e p r e s e n t a t i v e s

r e p r e s e n t a t i v e (∗ type=’membergroup ’) = ∗
r e p r e s e n t a t i v e (∗ type=’ communitygroup ’) = ∗
r e p r e s e n t a t i v e (∗ type=’ s e rv i c eg roup ’) = ∗

r u l e s

r u l e s e t

id = RS000000

name = Allow Trus t i e s

r u l e

id = R00000

comment = members de f ined in the t r u s t i e s group are a l lowed every ac t i on in

g4ds

ac to r (∗ type=’ r o l e ’) = t r u s t i e s

ac t i on (∗ type=’ op e r a t i on i d ’) = g4ds

t a r g e t (∗ type=’ r o l e ’) = a l l t a r g e t s

r e a c t i on (∗ type=’ d i r e c t ’) = al low
§ ¦

Policies may be defined in several files. The order of their definition does not matter since
the order of their processing is determined by their rule ids, rather than the order in the files.

To start-up with, G4DS is coming with a set of default policies, which may be found on
the resources CD.

Policy redirects - chaining of rules The set of rules might quickly grow in complexity and
it will be hard to structure and order them by their rule identifiers only. Consequently, the
approach of rule sets has been implemented, where each rule must belong to one rule set. In
order to continue processing in another rule, the reaction within one rule has to be defined
as ’redirect’. For these reasons, two reaction types are in place for G4DS access control,
namely ’direct’ and ’redirect’. For direct reactions the only supported values are ’allow’ or
’deny’. For redirected reactions however, the value must be the ID of a new rule set, whose

Chapter 5. Grid For Digital Security (G4DS) 98

processing will be started whenever the rule is hit. After finishing the processing of the given
ruleset (which may redirect reactions to further rule sets itself) the processing is terminated
for the current rule set, since one rule met the pattern for actor, target and action string when
running into the redirect rule. Further information about access control and particularly the
its implementation are provided in section 5.3.4 inside the implementation for G4DS.

5.3. Implementation

This section covers implementation details for G4DS. This way, it visualises connectivity to
database backends, draws attention to the message transfer and also provides information,
how data is generated, transported and processed on several nodes.

5.3.1. Managers and Database Connectors

In section 5.2.2 G4DS Database Layout the tables used for making all objects of the G4DS
infrastructure including their relations persistent have been introduced. This section will
explain how this information is accessed and how the access to the database is encapsulated
from the program core. Also have a look on Figure 5.4 for some more details.

Figure 5.4.: Managers and their DB Connectivity

Chapter 5. Grid For Digital Security (G4DS) 99

Managers

First of all, managers have been introduced, which are kind of containers for one special type
of information. Managers have been grouped into the following categories:

• Managers for community and member purposes

• Managers for security purposes

• Managers for communication purposes

• Managers for service purposes

Regarding to the groups the manager are placed in different modules. The following four
modules were introduced maintaining the given managers:

• Module communitymanager : Maintaining information about communities and mem-
bers

– Manager CommunityManager : Holding information about communities and their
relations to members, authorities and gateways.

– Manager MemberManager : Holding information about members and their rela-
tions to communities and gateways.

– Additionally, there are classes Member, Community and Gateway, each of them
representing one instance of the corresponding item.

• Module securitymanager : Maintaining information about algorithms and credentials.

– Manager AlgorithmManager : Holding information about algorithms, in fact the
relation between their names and identifiers.

– Manager CredentialManager : Holding information about publicly available cre-
dentials; hence the public keys with corresponding information, for all known
members.

– Manager PersonalCredentialManager : Holding information about the private cre-
dentials of this node; hence the private keys with relations to the corresponding
algorithm.

– Additionally, there are classes Algorithm, Credential and PersonalCredential used
for maintaining one instance of the corresponding item.

• Module communicationmanager : Maintaining information about protocols and end-
points.

Chapter 5. Grid For Digital Security (G4DS) 100

– Manager ProtocolManager : Holds information about protocols, in fact just about
the relation between names and corresponding IDs for protocols.

– Manager EndpointManager : Holds information about the endpoints. Endpoints,
as already explained in the database section, are bringing all the bits of information
together. This enables a user to just use an endpoint to assemble completely a
G4DS message (incl. singing and encryption) and send it off.

– Additionally, there are classes for Protocol and Endpoint. Again, they represent
one instance for the corresponding item.

• Module servicerepository : Maintaining information about connected services. Exactly
the same as the managers before, only because of the very different kind of data handled
in there named as a repository.

– Manager ServiceRepository : Holds information about services and their relations
to members, communities and authorities.

– An additional class for Service as one instance is provided too.

Managers DB Connectors

The managers themselves do not directly connect against the database. Instead, each of
them maintains a reference to a database manager which is encapsulating the information of
querying the database.

The same grouping as used for managers has been employed for the database connectors
for managers. Consequently, the four modules communitymanager db, securitymanager db,
communicatonmanager db and servicemanager db have been introduced. Instead of pro-
viding a class for each real manager the functionality is provided in functions. Figure 2:
Managers and their DB connectivity does not mirror the complete collection of functions,
instead it just provides an overview about the way of implementing it. This way, there are
always functions provided for accessing the resources from the database, the so-called getters;
as well as there are functions to append data for the database using the methods starting
with add.

Another level of abstraction has been reached in the database connectors for managers by
extracting the names of the tables to its own configuration module (not mentioned in Figure
5.4). This way, the database environment may be kept dynamic and table names may be
aligned easily to new requirements.

Chapter 5. Grid For Digital Security (G4DS) 101

5.3.2. Message transmission

XML has been constantly gaining popularity for message exchange. This is due to its sim-
plicity, its extensibility, its all-round functionality and self-explaining grammar. XML was
also chosen as the basic message format for G4DS.

Message Wrapping

Messages are organised in hierarchies. Each level of hierarchy should be separated; hence,
should not need to know about any impacts concerning higher or lower levels of hierarchy.
Consider a situation as pictured in XML representation in listing 5.2. First of all, each
message to send via G4DS is a G4DS message. Then it is indicated, that the message
inside the G4DS message is signed; this way it contains a section for the data itself and a
corresponding signature. The raw data again belongs to a service, whose name is defined
inside the service section.

Listing 5.2: XML Message Wrapping¨ ¥
<g4ds>

<s igned>

<data>

<s e r v i c e>

< i o i d s> app l i c a t i o n s p e c i f i c data ? e . g . an event </ i o i d s>

</ s e r v i c e>

</data>

<s i gna tu r e>abcd</ s i gna tu r e>

</ s igned>

<g4ds>
§ ¦

This simple example pictures already a requirement for wrapping again and again data
into other higher level wrappers. However, the G4DS top level tag does not need to know,
how a signed tag is assembled, instead it just needs to know where to pass the data, and this
way, who knows how to disassemble it. In order to allow a wide range of data to be wrapped
(including plain text or encrypted data) data is always wrapped using XML CDATA sections.
This way, for each element the XML document may be parsed down to the element, which
are relevant to this element; all wrapped data however will be encapsulated by a CDATA
section and skipped by the parser. Instead, a string representation of it is returned, and the
element handler itself should know what to do with it or to which location to pass it on.

This way, the example from Listing 5.2 looks in the CDATA wrapping version as given in
Listing 5.3.

Chapter 5. Grid For Digital Security (G4DS) 102

Listing 5.3: XML Message Wrapping using CDATA sections¨ ¥
<g4ds>

< [!CDATA[< s igned>

<data>

< [!CDATA[< s e r v i c e>

< i o i d s> app l i c a t i o n s p e c i f i c data ? e . g . an event </ i o i d s>

</ s e r v i c e>]] >

</data>

<s i gna tu r e>abcd</ s i gna tu r e>

</ s igned>]] >

<g4ds>
§ ¦

Note that the example in Listing 5.3 only explains the methodology, it does not exactly
mirrors the messages as they are exchanged within the G4DS topology.

Nested CDATA sections One problem of the approach taken with wrapping using CDATA
sections is that XML by its nature does not support nested CDATA sections. How should
the parser know, where a CDATA section finishes? It may only rely on the first occurrence
of a closing CDATA character sequence ”]]>”.

The way to get around this problem is the encoding of the data before putting it inside a
CDATA section and decoding it after gaining the string, so that no further CDATA section
beginning or end sequences are occurring inside the data. The way chosen for performing this
encoding is hex encoding. This means that each character in the source data is mapped into
its hex representation of its ASCII value; hence, mapped into two characters. This ensures
that no forbidden sequences are left in the data and straight forward procedures for encoding
and decoding could be implemented.

The problem from Listing 5.2 XML Message Wrapping using CDATA sections with hex
encoded values is pictured again in Listing 5.4.

Listing 5.4: XML Message Wrapping using CDATA sections and hex encoding¨ ¥
<g4ds>

< [!CDATA[< s igned>

<data>

< [!CDATA[3 c 73 65 72 76 69 63 65 3e 0d 0a 09 3c 69 6 f 69 64 73 3e 20 61 70 70

6c 69 63 61 74 69 6 f 6e 20 73 70 65 63 69 66 69 63 20 64 61 74 61 20 96

20 65 2e 67 2e 20 61 6e 20 65 76 65 6e 74 20 3c 2 f 69 6 f 69 64 73 3e 0d 0

a 3c 2 f 73 65 72 76 69 63 65 3e]]>

</data>

<s i gna tu r e>abcd</ s i gna tu r e>

</ s igned>]] >

<g4ds>
§ ¦

Chapter 5. Grid For Digital Security (G4DS) 103

Note that only one level of hex encoding is shown in Listing 5.4. In fact, also the data from
the tag <signed> on up to the corresponding closing tag </signed> would be hex encoded.
This results in a hex encoding of the already hex encoded CDATA section inside the data
element for the signed element.

The encoding on each level causes an increase of data by factor two. Consequently, the
nesting of hex-encoded CDATA sections ends up in exponential growth. The way to tackle
this drawback is the employment of compression facilities before the process of hex-encoding.
Since we are dealing with XML encoded data, which is text data by nature, and this way
may be compressed to a high rate, the employment of compression facilities cuts down the
overall data exchanged via G4DS.

Implementation of message wrapping All wrapping issues are encapsulated from other
modules in the module messagewrapper. Classes are provided in there, which are all derived
from the super class MessageWrapper, which provide functions for wrapping and unwrapping
for all required purposes. These are:

• wrap / unwrap G4DS messages

• wrap / unwrap control messages (more about this in section Sending and Dispatching)

• wrap / unwrap service messages

• assemble / parse XML encoded routing tables

• wrap for encryption / unwrap for decryption

• wrap for signing / unwrap for validation

The wrappers at this place perform some more actions then only putting the data into a
CDATA section and wrap by an element of the given name. Certain methods need parameters,
which have to be passed and encoded. For example, when wrapping an encrypted message,
information about the utilised algorithm has to be stored together with cipher text, otherwise
the receiver would not be able to decrypt the message on its side.

The measures for hex encoding are invoked automatically from inside these functions;
hence, they are totally transparent to any requesting resource. Again, the functionality for
hex encoding as well as hex decoding is encapsulated in their own functions, which are called
from the aforementioned wrapper functions.

Chapter 5. Grid For Digital Security (G4DS) 104

Encryption and Decryption

The theory for asymmetric encryption and decryption is that one encrypts a message at the
sender’s side with the public key of the receiver, so that only the receiver itself is able to
decrypt the cipher text using its private key.

As outlined before a variety of algorithms for encryption and decryption may be used with
G4DS. But how is outworked which algorithm and which keys shall be used for the requested
action? Referring to Protocols and Endpoints (section 5.2.2) in the database section, all
information about how and where to send a message is integrated in the endpoint. Whenever
a message shall be sent, an endpoint has to be chosen. However, this is part of the section
below named Sending and Dispatching and will be discussed there in detail. For now we
assume that encryption and decryption are performed of the sending or receiving process and
the endpoint is provided already whenever either of the two functions is invoked.

For a high level of abstraction a class SecurityController in its module securitycontroller
was introduced. Functions in there are provided for encrypting and decrypting messages. In
order to perform encrypting a name of an algorithm and a key (public key) together with
the plain text has to be provided. For decrypting, however, only the algorithm and the ci-
pher text is required - the personal key (private key) required for this action is loaded into
the algorithm implementation at start-up time using the relations in the PersonalCredential-
Manager. The SecurityController loads the corresponding algorithm for the name from the
AlgorithmController and passes the request for encrypting or decrypting to the algorithm
implementation. This is possible due to the common interface all algorithm implementations
have to provide when used for G4DS.

Signatures and validation The intention of signing messages and validating the signature
with the message is to ensure that the message has not been altered on the way from the
sender and, furthermore, to ensure that the message has really been originated at the sender
as pretended. Common practise is to use the private key of the sender at the sender’s side to
sign the message. The outcome or so-called signature is transmitted together with the actual
message and the receiver may use the message, the signature and the public key of the sender
to validate the given message and origin.

From the implementation point of view this process is very similar to the one of encryption
or decryption. Signing is performed as part of the sending process and validating as part of
the receiving or dispatching process. The same class as used for encryption (SecurityCon-
troller) is used here as well. Parameters have to be passed to the functions and the requests
are thereupon passed on to the algorithm implementation, which may be loaded using the

Chapter 5. Grid For Digital Security (G4DS) 105

AlgorithmController together with the name of the algorithm. All information required is
integrated in the endpoint.

Sending and Dispatching

The sending and dispatching process brings all the aforementioned issues of wrapping, en-
crypting, signing and the like together. First of all, the central point for performing sending
or dispatching is the module messagehandler with its classes GlobalOutgoingMessageHandler
and GlobalDispatcher. The GlobalOutgoingMessageHandler may be accessed directly to send
a message. The GlobalDispatcher provides a function dispatch which should be called by any
protocol implementation whenever a new message arrives.

Sending a message There are two different kinds of messages to be sent via the G4DS
infrastructure; namely service messages and control message. Service messages are messages
from any connected application and are to be delivered to the same application on the re-
ceiver’s side. Control message in contrast are G4DS internal messages and keep the system
working and information up-to-date all over the network.

Consequently, two functions are provided in the GlobalOutgoingMessageHandler:

• sendServiceMessage: The G4DS wide unique ID of the service invoking the function
must be provided together with an endpoint and the actual message to be sent. There
is no limitation for the format of the message; it might be plain text, XML encoded
data or data of any other type.

• sendControlMessage: Control messages belong to a control sub system. The unique id
for this subsystem has to be provided together with an endpoint and the actual message
to be sent. Since these messages are G4DS internal messages, they are definitely XML
encoded; their detailed structure, however, depends on the control subsystem and does
finally not influence its delivery.

Either of the two functions will call its wrapper function in the MessageWrapper and there-
upon pass the wrapped message on to the final function for delivering G4DS messages, the
sendG4dsMessage inside the GlobalOutgoingMessageHandler.

The function sendG4dsMessage will load all required information about algorithms, cre-
dentials and the like from the managers and perform the actions for signing the message
and encrypting the message. Each of them is followed by a call in the MessageWrapper for
encapsulating the output appropriately.

Chapter 5. Grid For Digital Security (G4DS) 106

Finally, the result is wrapped in a G4DS message using the MessageWrapper and the
protocol implementation as stated in the endpoint is loaded. The message is sent off using
the sending function inside the protocol implementation.

Receiving and dispatching a message As stated in the introduction, the first locations for
incoming messages are the listeners of the protocol implementations. These protocol imple-
mentations, however, are in charge to pass the message directly after receiving (and removing
protocol specific header information) to the function dispatch inside the GlobalDispatcher.

This function will perform the inverse actions to the sender in the opposite order. This
way, the incoming message is first of all passed to the MessageWrapper to unwrap it from
the G4DS tags. Afterwards it is checked for encryption tags, if available, the algorithm name
and cipher text is extracted using the MessageWrapper and the decryption is performed
using the private key for this algorithm. Furthermore, the message is validated - by first
of all extracting the information using the MessageWrapper, then recovering the endpoint
of the sender and finally performing the validation. Afterwards, the nature of the message
is determined; either being a service message or a control message. Either of them will
be unwrapped using the MessageWrapper. Afterwards they are passed on depending on
the nature; control messages are passed to the ControlMessageDispatcher inside the module
g4dsconfigurationcontroller, service messages in contrast are passed to the ServiceIntegrator
inside the module serviceintegrator. Messages are processed further in these classes. For
more information check Controlling G4DS (Section 5.3.3) for control messages and G4DS
and Communities (5.3.5) for service messages.

Message contexts Messages are wrapped several times before sent off and unwrapped after
receiving. For example a MemberControllerMessage goes through the following wrappings:

• G4DS Configuration Controller Member Subsystem wraps it into a Subsystem Member
message

• G4DS Configuration Controller itself wraps it into a G4DS Controller message

• G4DS Message Handler wraps it into a G4DS (plain) Message

• This message is encrypted and wrapped again into a G4DS (ciphered) message

At the receivers side each layer has to be unwrapped correspondingly. In each layer several
kinds of information are transmitted. It would not make sense to unwrap the information
and pass it on and on as parameters to the dispatcher for the next layer. Consequently, a

Chapter 5. Grid For Digital Security (G4DS) 107

message context mechanism has been employed. Inside the module messagehandler there is a
class MessageContextController which is able to maintain all the corresponding information
for one message, identified by its message id. Each layer adds its information to the context
and only passes the message id on to the dispatcher for the next layer. Finally, the processor
of the message may access all required information (using the keys for the dictionary) and
dispose the context for this message (id).

5.3.3. Controlling G4DS

A central module has been introduced for controlling all matters for G4DS: namely the
g4dsconfiguationcontroller. Basically, this module provides two classes as its interface to the
outside environment; the ControlMessageDispatcher and the OutgoingControlMessageHan-
dler.

The former is used, as stated previously, by the GlobalDispatcher for passing on any Con-
trolMessage. The ControlMessageDispatcher thereupon extracts the information from the
received message using the ControlMessageWrapper within the module messagewrapper. As
part of this the id for the requested control subsystem (MemberController, CommunityCon-
troller, ServiceController or RoutingController) is returned. This will be used in order to
pass the message on to the dispatcher of the corresponding Control subsystem.

The OutgoingControlMessageHandler in contrast is responsible for assembling control mes-
sages (invoking appropriate wrapping procedures) and pass it on to the global outgoing mes-
sage handler. All messages created in any of the control subsystems should only be send
through this interface, they should not connect to the global outgoing message handler them-
selves.

Each subsystem controller is in charge of controlling matters of a certain subject area. It
has to provide a dispatch function in order to allow processing of incoming messages. In
detail, the following control sub systems are in place:

MemberController

The member controller handles all requests concerning members. These include:

• Member description requests

• Replies to member description requests

• Member description update procedures

Chapter 5. Grid For Digital Security (G4DS) 108

Member description requests request the latest description of either the receiver of the
request or any other member of the G4DS infrastructure. These requests may be rejected
regarding to the role of the requesting party in the permission model.

Member description update procedures are in place for providing facilities for each member
to keep its own description up-to-date. Usually they will be pushed messages rather than
polled messages (as for most of the remaining messages).

In the module messagewrapper is a class ControlMessageWrapper, which provides functions
for the subsystem MemberController to wrap and unwrap its messages.

The dispatcher of the MemberController supports job continuation; hence regarding to the
information in the job context about references it will not determine the requested action by
evaluating the action flag itself, but instead it will put the extracted data into the message
context (data) and thereupon the continuation of the scheduled job. (see section 5.3.7 for
details on jobs)

CommunityController

The community controller handles all requests concerning communities. These include:

• Community Description requests

• Replies to Community Description Requests

• Community Membership requests

• Replies to Community Membership Requests

• Community Description Update procedures

Community Description requests are sent to a member of this community, usually an
authority. They will then reply appropriately - means, whenever they have an up-to-date
version of the description, it will be send. The community descriptions are not supposed to
contain confidential data since they only describe, in which way the members communicate.

Community Membership requests are requests for a list of the known members of a certain
community. Not for all communities this feature will be available (depends on the policy
for the community). Replies will be generated regarding to the permissions of the member
requesting.

Authorities are responsible for keeping the description of the community up-to-date. The
development of a new version will usually involve manual intervention; the distribution,
however, is performed by the system automatically. For these purposes functions grouped
under the name Community Description Update procedures are in place.

Chapter 5. Grid For Digital Security (G4DS) 109

As much as the MemberController the CommunityController is making use of wrapping
functionality from the ControlMessageWrapper inside the module messagewrapper.

Additionally, it supports the job continuation; hence, control message for sub-system com-
munity controller with a reference id within the message are passed to the delayed job rather
then processed directly. (see section 5.3.7 for details on jobs)

ServiceController

In order to control services, a service controller has been introduced. It is dealing with the
following concerns:

• Request a service description for a certain service

• Reply to service description request

• Service description upload procedures (push mode)

• Request list of members, subscribed to a certain service

• Reply to member list request

• Request subscription to a certain service

• Reply to service subscription

Regarding to the community controller functionality, the procedures for downloading and
uploading service descriptions is supported by the service controller. Again, service descrip-
tions are not supposed to be confidential; hence, they may be exchanged throughout the
G4DS topology.

One additional functionality for the service controller is the request of a list of members
subscribed to a service. Practically, all authorities of a service maintain a complete list of
all members subscribed to it. Whenever a member is interested in this list it may request it
using this option. The reply, however, depends on the policies, employed for both the given
service and the node, the request is sent to.

Finally, the service controller must support the automatic subscription to a service. In
order to reply positively to this request, the receiver must be an authority of the requested
service. Furthermore, the reply depends on the policy employed for the given service and the
node, the request is sent to.

Messages for the service controller are correspondingly to member and community con-
troller wrapped with the help of the ControlMessageWrapper.

Chapter 5. Grid For Digital Security (G4DS) 110

Since replies are generated within the service controller, there must be a job on the other
side to wait for a message; hence, to continue processing. Consequently, service controller
can determine whether an incoming message is in reply to a previously sent request and will
pass the message on to the appropriate job instead of processing it itself. (see section 5.3.7
for details on jobs)

RoutingController

Members of G4DS are grouped in so-called communities. Communities are not supposed to
be isolated from each other; hence, there will be an overlapping of communities in regards
to their memberships, and even more, members are supposed to pass on message from one
community to another. This process is called routing. In order to make this inter-community
communication working, nodes have to exchange information about gateways; hence, which
nodes are allowed to pass on messages from which community into which destination com-
munity. All procedures concerning these matters are put together in the routing controller.
The routing controllers provide the following functionalities:

• Download routing table (pull mechanism)

• Replies for routing table download

• Upload routing table (push mechanism)

• Replies for routing table updates

Each node is maintaining a routing table in order to know, which node it needs to contact
first in order to get a message delivered finally to a certain community. (Check section 5.3.5
for details) For purposes of exchanging this information with other nodes, this routing table
may be encoded in an XML message using functionality from the routing table manager and
the routing table wrapper.

The processing of these requests depends on the local access control policy. Usually, routing
information is not supposed to be handled as confidential; thus, routing table download
requests should be replied with the encoded local routing table. Routing tables sent in push
mode will usually only be accepted from very trustworthy nodes.

Since both approaches (pull as well as push mechanism) have to await messages replies, the
routing controller also supports the continuation of jobs. Consequently, messages, which are
sent as a reply to a previous outgoing routing message, are passed on to the corresponding
job rather than processed by the routing controller itself.

Chapter 5. Grid For Digital Security (G4DS) 111

Processing Descriptions

Several kinds of descriptions are being generated and processed all the time when working
with G4DS. These include:

• MemberDescriptions (MDL)

• CommunityDescriptions(TCDL)

• ServiceDescriptions (KSDL)

In order to provide an easy way to generate and access the information all of them are XML
formatted descriptions. (Their layout is discussed in detail in section 5.2.3.) An additional
module named descriptionprocessor has been introduced to deal with all matters of generating
and processing these descriptions. For each descriptions there is a class within this module;
namely MemberDescriptionProcessor, CommunityDescriptionProcessor and ServiceDescrip-
tionProcessor. The only action they perform is the parsing of the XML messages and the
storing of the values in dictionaries.

However, more sophisticated actions may be carried out by these classes using their apply-
functions. These ones are in charge to apply all the information stored in the dictionaries into
the local managers (and this way into the database backend). In detail, they are performing
the following actions:

• Process and apply the direct data for a member, community or service (such as ID,
name or description)

• Process and apply referenced objects such as credentials (keys), protocols and endpoints

• Automatically, download, process and apply required descriptions for referenced objects

Solving Back-Referencing The last bit of automatic downloading and applying of descrip-
tions comes along with problems due to references within the descriptions to each other.
Consider the following situation: A new member description shall be applied. Member de-
scriptions include information about subscriptions to communities of this member. This new
subscription of the member now references a new community, not yet known on the local
system; consequently this description has to be downloaded as well. If we further consider,
that the member description in the first place describes a member who is an authority of
the new community, the community description would reference back to this member and
the description of this member would be requested for downloading again. The following
procedure was implemented to get around this kind of problems:

Chapter 5. Grid For Digital Security (G4DS) 112

1. Whenever a description shall be applied, it is first of all applied with its basic informa-
tion excluding any referencing information.

2. Afterwards, the descriptions of the referenced objects (which are not yet known on this
node) are download and applied. (Of course, each of them is running through the same
process as well.)

3. The original description is applied down to all details and references.

This way, it can be made sure, that back referencing is not a problem anymore. However,
the consecutive downloading of required descriptions is an expensive process. It should always
run as a separate job (in a different thread) - check also Job context and job continuation.
There is no termination for this process unless it’s finished down to the last referenced object.

Maintain environment

In order to provide access to the configuration options for G4DS, a maintain environment
is provided. Once this python program is started, it starts up a G4DS backend system and
connects against it. The easiest way to describe its functionality is a screenshot of the menu
as shown in Listing 5.5.

Chapter 5. Grid For Digital Security (G4DS) 113

Listing 5.5: Interactive menu for G4DS maintain environment¨ ¥

Maintain G4DS (Node M003)

Choose from the f o l l ow i n g op t i o n s :

General Options

[s] . . . Pr int s t a tu s o f l o c a l node

[t] . . . Send t e s t message to node

[l] . . . Show l a t e s t l og e n t r i e s

[y] . . . Pr int permis s ion matrix

[z] . . . Reca l cu la t e permis s ion matrix

Member Options

[i] . . . Pr int in fo rmat ion about a G4DS node

[m] . . . Add / update member d e s c r i p t i o n from f i l e

[n] . . . Export l o c a l member d e s c r i p t i o n to f i l e

[e] . . . Add endpoints f o r member

[p] . . . Upload member d e s c r i p t i o n to remote nodes

Community Options

[j] . . . Pr int in fo rmat ion about a Community

[c] . . . Add / update community d e s c r i p t i o n from f i l e

[d] . . . Add / update community d e s c r i p t i o n from remote node

[u] . . . Subscr ibe member to community

Se rv i c e Options

[1] . . . Pr int l i s t o f known s e r v i c e s

[2] . . . Pr int in fomat ion about one s e r v i c e

[3] . . . Add / update knowledge s e r v i c e d e s c r i p t i o n from f i l e

[4] . . . Add / update knowledge s e r v i c e d e s c r i p t i o n from remote host

[5] . . . Push s e r v i c e d e s c r i p t i o n to remote host

[6] . . . Subscr ibe member to knowledge s e r v i c e

[7] . . . Create pub l i c key pa i r to connect with a c l i e n t app l i c a t i o n

Routing Options

[r] . . . Pr int rout ing tab l e

[a] . . . Add new route manually

[f] . . . Flush rout ing tab l e

[w] . . . Reca l cu l a t e rout ing tab l e by p ro c e s s i ng gateway in fo rmat ion

[x] . . . Po l l rout ing in fo rmat ion from gateways and apply to l o c a l rout ing

tab l e now .

[q] . . . Quit
§ ¦

Options are categorised into:

• General options

• Member options

Chapter 5. Grid For Digital Security (G4DS) 114

• Community options

• Service options

• Routing options

Each of them provides access to all important configuration facilities. Whenever required,
files from the local file system may be inserted; however, since the maintain environment is
connected to the G4DS backend, it is able to collect most of the required information from
the local G4DS managers, or secondly, from connected nodes.

Several options within maintain are related to each other. For example, whenever a new
community description is added to the system, gateway information for it should be processed
and the routing table should be recalculated. These dependencies are resolved within the
implementation; consequently, a required function will be called automatically by its host
function after or before processing the function itself.

5.3.4. Access Control Implementation

The implementation of access control is based on policy files which are parsed at booting up
time of G4DS and then applied to a permission matrix. The policy files have to be placed
on the location as defined in the G4DS config file. By default the files are loaded, which are
defined in the config file.

The access matrix is two dimensional. Each entry inside the matrix contains an ordered
list of couples (action — reaction). Check section 5.2.4 for more information. Two separate
processes occur for working with the access matrix, namely the loading of policies with its
application to the matrix and the validating of a request originated from any location within
the G4DS architecture. Either of them is explained in detail in the following sections.

Creating the matrix from policy files

The content of all requested policy files is loaded into memory using dictionary data struc-
tures. Afterwards the dictionaries are processed in order starting with the default ruleset
as stated in the central config file with value POLICY MAJOR RULESET ID. Hence, the
order, in which the policy files are read and processed, does not matter (at least as long
as no result set id is used several times, which would result in overwriting the value in the
dictionary).

The processor iterates the list of rules in the major ruleset ordered by rule id (so all rules
within the rulesets have to be kept in order regarding their rule identifiers). Whenever a
rule has the reaction type ’direct’, the value is put directly into the access matrix. (In fact,

Chapter 5. Grid For Digital Security (G4DS) 115

for each possible combination of the rule for actor / target one item is appended to the list
of rules for the corresponding couple.) Whenever the rule has the reaction type ’redirect’,
the processing is continued with the requested rule set immediately and, after finishing the
redirected list, continued after the redirected reaction. Redirection are allowed in all rulesets;
hence they may be nested.

Access the Matrix - validate requests

Whenever a request is performed against the authorisation engine, first of all, the authorisa-
tion controller is performing a look-up in the access matrix and this way loading the list for
the requested couple of actor / target. This list is then iterated (by order as established at
boot-up time) and the first rule hitting the requested action is taken. Regarding the action
stored for this rule the function will return the appropriate value.

Roles for access control objects

As outlined in section 5.2.4, you may define roles for either of the three object types within
access control. This way, rules do not need to be defined duplicately, since they may apply to
a set of actors, a set of targets and / or a set of operations. Representatives of roles may be
defined in two different ways: either by naming the ID of each representative or by providing
a wildcard from the supported list of wildcards.

Supported wildcards are:

• ’*’ - all possible values

• ’authorities communities’ - all authorities for a community (only allowed for actor)

• ’authorities services’ - all authorities for a service (only allowed for actor)

• ’authorities members’ - the member for himself (only allowed for actor)

• ’Cxxxxxx’ (in conjunction with type attribute ’membergroup’) - All members of the
community with ID Cxxxxxx

• ’Sxxxxxx’ (in conjunction with type attribute ’membergroup’) - All members of the
service with ID Sxxxxxx

At boot-up time of G4DS access control the wildcards are resolved appropriately in respect
of the targets as given by the rule. For example the combination of actor with role definition
as given in Listing 5.6

Chapter 5. Grid For Digital Security (G4DS) 116

Listing 5.6: Sample role definition¨ ¥
group

rolename = communityauthor i t ies

r e p r e s e n t a t i v e s

r e p r e s e n t a t i v e (∗ type=’membergroup ’) = author i t i e s community
§ ¦

and the target as defined in the final rule definition as given in Listing 5.7

Listing 5.7: Sample rule definition¨ ¥
r u l e

id = MY ID

comment

ac to r (∗ type=’ r o l e ’) = communityauthor i t ies

ac t i on (∗ type=’ a c t i o n i d ’) = g4ds . c on t r o l . community

t a r g e t (∗ type=’ community ’) = C002

r e a c t i on (∗ type=’ d i r e c t ’) = al low
§ ¦

would create entries in the access matrix for all couples made up by the ID of any authority
of Community C002 as actor and the ID of Community C002 as target.

Resolve nestings

In subsection 5.3.4 it was mentioned already, that by using redirection, rules may continue
processing within another ruleset, and consequently in more rules. This way, there will be a
cascading of rules, where each of them comes with its own definitions for actor, target and
operation. Since G4DS access control resolves the rules into an access matrix, it must be able
to handle different values for each of them from various rules.

To approach this problem we first of all have to visualise the logical relationship between the
elements of the rule definition. Listing 5.8 shows the required AND operations for evaluating
the rules; hence, to check whether a requested operation hits one particular rule:

Chapter 5. Grid For Digital Security (G4DS) 117

Listing 5.8: AND crossing for elements of policy rules¨ ¥
acto r (r eque s t) ELEMENT OF actorgroup (ru l e 1) AND

actor (r eque s t) ELEMENT OF actorgroup (ru l e 2) AND

. . .

a c to r (r eque s t) ELEMENT OF actorgroup (ru l e N) AND

ta rg e t (r eque s t) ELEMENT OF targetgroup (ru l e 1) AND

ta rg e t (r eque s t) ELEMENT OF targetgroup (ru l e 2) AND

. . .

t a r g e t (r eque s t) ELEMENT OF targetgroup (ru l e N) AND

operat i on (r eque s t) ELEMENT OF operat iongroup (ru l e 1) AND

operat i on (r eque s t) ELEMENT OF operat iongroup (ru l e 2) AND

. . .

ope ra t i on (r eque s t) ELEMENT OF operat iongroup (ru l e N)
§ ¦

Inside each of the groups (actorgroup, targetgroup or operationgroup) there might be
several representatives (check section 5.2.4 for details). Since, only one of the representatives
needs to be hit at a time, there is a logical OR relationship between all the representatives
of one group.

In practise, the OR and AND relationships are handled in two ways:

1. Resolving the values for actors and targets

2. Keep and store the values for operations in the matrix

This is an appropriate consens of resolving values beforehand (at G4DS access control boot-
up time) and iterating them at request time (access control validating). We know about the
finite collection of actors and of targets and are able to calculate all possible combinations
between them. This way, for the first processed rule within the nesting the list of all avail-
able couples actor - target, which are addressed by the rule definition, are calculated and
temporarely stored. Once, the processing is continued with a new rule, the same procedure
is undertaken for its definition of actor and target. Due to the AND relationship between the
two sets, we calculate the subset of couples, which are member of both sets and store this for
now. This process is repeated for each rule in the nesting process; finally we end up with a
set of actor - target couples, which are defined by all rules, we visited along the process.

In contrast, we are not able to determine all operation strings at boot-up time; the collection
of operations is kept dynamic and may be extended by connected applications / services.
Consequently, we have to picture the AND and OR relationships between operation strings
in our access matrix model. Figure 5.3 in section 5.2.4 only visualises a simplified model
of the topology; in practise the ordered list of action strings and corresponding reactions
from Step 2 of the figure appears to be more complex than shown there. Each entry of the

Chapter 5. Grid For Digital Security (G4DS) 118

action in each line of the list appears to be a list itself made up by action strings which are
in AND relationship with each other, whereupon, these action strings are again not really
action strings but a list of action strings, standing in an OR relationship to each other.

At validation time, the list for one combination of actor - target is still loaded from the
access matrix. However, the iteration through the list becomes a bit more complex due to the
AND and OR relations within each entry, which needs to be resolved here. For easy access
of action strings dictionaries have been implemented to support this process.

5.3.5. G4DS and Communities

As stated in the introduction, members within G4DS are supposed to be grouped into com-
munities, the so-called Trusting Communities (TC). Each member may be subscribed to
several communities; this, however, does not include that each member may pass information
from one community to another.

In order to carry out this action, they must possess the additional role Community Gateway,
for which applies:

• Gateways are always defined for two communities and only one direction for passing
messages between them.

• For each gateway constellation (source gateway, destination gateway and direction)
there may exist several gateway instances with different members.

• The gateway member must be member of both communities, the gateway role is assigned
for.

• The gateways are defined in the community descriptions (see section 5.2.3); thus, only
community authorities may decide about their definitions. They are separated into
incoming gateways and outgoing gateways; consequently, for each incoming gateway in
community description A there must exist an outgoing gateway in community B and
vice verse. (assuming, that A and B are the two communities involved)

• Each member may employ several gateways roles. Very likely will be the gateway role
between two communities in both directions; however, a node may also pass messages
between more than two communities.

The distribution of a message; hence, whether it shall be passed on to other communities
depends on several descriptions and policies, which are:

• The community descriptions of the two communities involved

Chapter 5. Grid For Digital Security (G4DS) 119

• The access policy, which is usually coming with a trusting community description

• The access policy of the local node

• Information from the connected application, how to handle the given piece of informa-
tion (which means, distribution information on top of the receivers address)

Once the passing of messages involves a higher number of communities, it shows more and
more similarities with the routing process employed in the Internet. Each node within G4DS
is maintaining a routing table, which is updated frequently using a polling mechanism. Each
entry within the routing table is made up by the following values:

• ID of the Source Community

• ID of the Destination Community

• ID of the member for the next hop on the route to this community

• ID of the community to be used to connect to the member on the route towards the
final community

• Information about costs, which are measured in number of hops on the way to the final
destination

The coming two sections break down the problem into the two areas, namely the rout-
ing (passing) of messages in regards to a routing table, and secondly the installation and
maintenance of the aforementioned routing table.

Routing of messages

The routing of a message is quite similar to the routing mechanism within the Internet; hence,
as employed for the TCP/IP protocol stack (Stevens (1994)). It starts with the sender of a
message, which will perform the following actions:

• The sender checks, whether it is in the destination community of the message itself.
(The destination community is defined by the connected application, if not given, one
will be calculated by the routing system)

• If the sender is member of this community, it will deliver the message directly to the
final receiver

Chapter 5. Grid For Digital Security (G4DS) 120

• In case of a mismatch regarding the communities, the routing engine checks whether
there is a route available towards the final community (including permission checks
against the local access control)

• If no route may be determined, the sending of the message is cancelled and an error
will be reported to the connected application

• If, however, a route may be calculated, the actual message is wrapped into a G4DS
routing message and passed through the G4DS control system, which will send it off to
the next hop on the way towards the final destination.

Each receiver of a message may determine whether the incoming message is a routing
message by examining the type of message within the G4DS control system. If the incoming
message is a directly sent message, it is passed on directly to the connected application (in
case of a service message) or the corresponding control sub-system (in case of a G4DS control
message). If this is not the case, however, the following steps are performed:

• Check the community of the incoming message and attempt to find a value within the
routing table towards the final destination community (if there are several entries in
the table, pick the one with the lowest cost)

• Check the acquired route against the access control

• If the acquired route does not involve any further hops, the message is wrapped into a
routing message with destination of the final receiver of the message

• If, however, another hop is required, the message is wrapped into a routing message
with destination of the next hop and destination community as stated in the routing
table entry

Using this infrastructure, applications may specify destinations for their messages all over
the G4DS topology; the local node is the starting point of routing by sending it off to the
right community gateway. From there it will be routed through the entire network until it
reaches its final destination.

Maintain the routing table

In its basics the routing mechanism of G4DS is grounded on the Routing Information Protocol
(RIP) (Hedrick (1988)). The so-called gateways are establishing connections between each
other frequently in order to exchange their routing tables. When bringing up a G4DS node
for the very first time, it will perform the following tasks:

Chapter 5. Grid For Digital Security (G4DS) 121

• Iterate all communities, the local member is member of, and create a value in the
routing table with cost 1 (source and destination community are equal)

• Iterate all known gateways (which were assembled by processing community descrip-
tions in an earlier stage) and create a value in the routing table with cost 1 (source and
destination community as stated in the gateway)

• Again iterate the list of all known gateways and pick the ones, for which the source
community is the destination community of one of the aforementioned two steps and
create an entry in the routing table with them using value 2 for cost

After this initial setup, the dynamic routing will kick in on this node and, this way, it
will connect to all directly connected gateways known on this node. In detail, this process is
made up by the following actions:

• Determine a list of gateways by evaluating gateway information, which was created in
an earlier stage by processing community descriptions

• Connect to each of these gateways and request a copy of their routing table (this request
is encapsulated in a G4DS control message subsystem routing controller)

• Decode the XML encoded routing tables of the replies (by using functionalities of the
XML Wrapper) into an easily accessable dictionary format

• Iterate the dictionaries and compare there content against local routing information
and, this way, add or update entries in the routing table

The behaviour of the routing system may be influenced by settings provided in the config-
uration files. For example, the time interval between two poll procedures may be defined or
the entire dynamic routing may even be disabled. The status of the current routing table may
be shown using the maintain environment coming with G4DS (see section 5.3.3 for details).

5.3.6. Service Integration

The final aim of G4DS is the use with applications, the so-called services. In section 5.2.3
it was explained already that for each service there must exist an XML formatted service
description, which must be added to the local G4DS system through the maintain interface
(section 5.3.3). The following two sections will explain, how messages for services are handled
within G4DS, and furthermore, which way a service may connect to G4DS and make use of
it in order to communicate with other members of this service.

Chapter 5. Grid For Digital Security (G4DS) 122

Service identification and dispatching of messages

It was stated already that G4DS separates two types of messages; namely (G4DS internal)
control messages and the service messages. By processing the message type of an incoming
G4DS message, the global message dispatcher is able to determine the type of a message and,
in case of a service message, passes it on to the dispatcher of the ServiceIntegrator.

The service integrator thereupon will perform server al actions:

1. Extract the service id from the message and test against the access control, whether
this message is allowed on this node

2. Perform application layer access control. By providing an action string to G4DS when
passing on a message, services may make use of G4DS access control facilities. This way,
messages are filtered on G4DS layer before they are even passed on to the application.
This behaviour is explained in more detail for the IOIDS service in section 6.3.3.

3. Check, whether any client application has connected beforehand for the service with
the given service id

4. Looks for the callback function for the connected client application and passes the
message on to it (using the FIFO mechanism as described in the next section).

For outgoing messages an interface is provided as well. It assembles the corresponding
G4DS service message and passes this one on to the global outgoing message handler, which
thereupon will take care of the final delivery.

Connect applications to G4DS

In order to allow several applications to use G4DS at the same time, a client / server approach
has been put into place. This is implemented using FIFOs. Consequently, it is compulsory,
that one starts the server before they can use G4DS with any application. In more detail
the following actions have to be performed in order to make use of G4DS functionality from
within any application.

Start G4DS Backend The easiest way to start the server is the use of the provided init
script (g4dsrc). During the installation process, it is copied to the folder ”/etc/init.d”. Start
the server with the command:

/etc/ init .d/g4dsrc start

You may stop it later on using

Chapter 5. Grid For Digital Security (G4DS) 123

/etc/ init .d/g4dsrc stop

Any time you may check whether it’s running using the command:

/etc/ init .d/g4dsrc status

Whenever it is required to start the server manually, the python script ”g4dslistener.py”
has been installed to ”/usr/sbin” during the installation process.

Connect with client application G4DS implements asymmetric key authentication for clients
to connect against the G4DS Backend. Hence, before any application connects to the grid
system, a private / public key pair has to be created. In order to do so, the maintenance
environment (see section 5.3.3) of G4DS has to be started. The following instructions have
to be followed:

python maintain.py # this starts into interactive mode

Choose option ’1’ here and create a new public / private key pair. Export the private key
to a location within your local file system, where one can access it from the application later
on; add the public key to the list of authorised services.

Ones, the server has been started and the key has been created, the application may connect
to the grid system. Basically, the commands as provided in Listing 5.9 are to be used within
the Python code:

Listing 5.9: Connect with Application against G4DS¨ ¥
path pr i va t e key = ’ y ou r l o c a t i o n o f k e y ’

s e r v i c e i d = ’ S1234567890 ’ # ID of your s e r v i c e

from g4ds . g 4d s s e r v i c e import G4dsService # g4ds s e r v i c e prov ides the

i n t e r f a c e f o r the c l i e n t a pp l i c a t i o n s

gs = G4dsService ()

gs . connect (s e r v i c e i d , None , path pr ivate key , incomingMessageProcessor)

. . . do l o t s o f s t u f f here

gs . sendMessage (destinationMemberId , destinationCommunityId , message) #

sending one message through G4DS

gs . d i s connec t () # disconnec t from

the g4ds backend

def incomingMessageProcessor (message) :

pass # do whatever you want to do with incoming messages from G4DS
§ ¦

Chapter 5. Grid For Digital Security (G4DS) 124

5.3.7. Message identification and job implementation

In certain cases there will be a need to process knowledge from several locations from within
the G4DS topology. This process might be time consuming and involves the requirement of
linking information to each other.

Therefore messages must have a unique ID in order to allow referencing of them later on
first of all. Furthermore, the time consuming overall process must not block the entire node
from serving other requests. The following two sections are dealing with these two concerns.

Message identification and message replies

In order to identify messages appropriately a unique message id is generated before a new
message is send off. This responsibility is overtaken by the function generateId inside the
tools module. At the current stage only a random number is generated to serve this job.
This message id is always sent as part of a G4DS message.

Whenever a message shall be sent as a reply to an earlier message is must reference its
message id. The GlobalOutgoingMessageHandler supports this functionality by providing
a parameter in the interfaces of the sending message functions. (It will then use wrapper
functionality to include this information in the XML message finally.) The handlers for both,
service and control messages are providing an interface as well to put references into messages,
and will pass the id on to the GlobalOutgoingMessageHandler.

Job context and job continuation

As stated before, everyday work of G4DS includes actions incorporating several time con-
suming actions themselves. In order to prevent the system from being unreachable we have
to introduce different threads at this point.

There is not a real job scheduling in place for G4DS, instead for certain functions, which
are thought to be time consuming at execution time, facilities have been provided to run
them in a dedicated thread. This way, these functions look as described in listing 5.10.

Chapter 5. Grid For Digital Security (G4DS) 125

Listing 5.10: Background Processing and Job Locking¨ ¥
def bigFunct ion (par1 , par2 , inBackground = 0) :

i f inBackground :

import thread

thread . s ta r t new thread (bigFunction , (par1 , par2 , 0))

return

msgId = getMemberControl ler () . requestMemberDescr ipt ion ()

j l = JobLocker ()

getJobDispatcher () . addJob (msgId , j l)

here we wait now un t i l any message a r r i v e s r e f e r enc ing us

message , args = getJobDispatcher () . getMessage (msgId)

i f args [’ key ’] == any value :

fu r t h e r proces s ing
§ ¦

By default the functions are not put into background. Listing 5.10 visualises the way to do
so using the variable inBackground. If this variable is set the function will start itself again
in a new thread and return directly afterwards in the calling thread. The parameters are
exactly passed to the new function inside the thread as they were received in the first place
(all but the inBackground variable of course).

Listing 5.10 also provides information about the job locking process. Job locking needs to
be utilised whenever some information has to be downloaded before a job can be continued.
Any paused job is always identified by a message id. This way, it is easy to identify the
corresponding job for the incoming message dispatcher just by evaluating the value of the
reference id (as discussed above in Message identification and message replies). The controller
for this particular message performs a look-up in the dispatcher table for the extracted ref id
and will try to resume the connected job.

Listing 5.11: Example of continuation for a job¨ ¥
def CommunityController . d i spatch (msgId) :

from messagehandler import getMessageContextContro l l e r

msgref = getMessageContextContro l l e r () . getValue (msgId , ’ r e f i d ’)

i f msgref :

print ”\n\ tAttempt to resume Job %s” %(msgref)

from r un t imecon t r o l l e r import getJobDispatcher

args [’ s u c c e s s ’] = suc c e s s

getJobDispatcher () . resumeJob (messagere f e rence , data , args)

else :

other community c o n t r o l l e r proces s ing
§ ¦

An example is shown in Listing 5.11, which demonstrates the dispatching procedure within

Chapter 5. Grid For Digital Security (G4DS) 126

the G4DS configuration controller - subsystem community controller. Using the message
context facilities it is determined whether this message is in reply to any message sent from
this node. If this is the case, the extracted data will be passed to the job dispatcher, which
will thereupon continue the corresponding job. The last three lines of Listing 5.10 show,
how exactly this data is collected from the job and processed further in there. Once the
community controller has resumed a job, it will not carry on with any processing of the
incoming message.

The community controller just serves for this example. Exactly the same way other dis-
patchers are carrying out their work in order to support job continuation.

5.3.8. Logging Facilities

A G4DS instance is running in several threads, which makes it very hard to pass errors,
exceptions or runtime messages to any connected user or application. Furthermore, most of
the times the G4DS backend will run as a Linux service (see Section 5.3.6); consequently,
there is no direct user interaction at all. However, the user / administrator should always
be in the position to track movements within G4DS concerning the local node. This way, a
logging mechanism has been put into place.

Logging implementation overview

G4DS logging enables the G4DS system to log into two different targets:

• A G4DS unique log file (with G4DS syntax)

• Linux / Unix common syslog facilities (Lonvick (2001))

The G4DS unique logging files look similar to the well known Linux syslog files; hence, each
entry in there is equipped with a date-time stamp and a logging message. Additionally, an
action id is provided, which enables easy processing and filtering of log information without
evaluating the log message text itself.

In order to put G4DS logging output into the syslog facilities, a syslog service has to be
started on the local machine. G4DS logging connects against this instance and will pass on
all messages equipped with the service identifier g4ds.

Settings for G4DS logging may be done in the global configuration file for G4DS. These
allow to specify file names for G4DS file logging, to change the service identifier for syslog
logging and to adjust the log level to the local needs.

Chapter 5. Grid For Digital Security (G4DS) 127

Logging level and further settings The entire logging implementation is encapsulated in
the module g4dslogging. The 6 different log levels are defined there in detail. In fact, each
log-level is defined by a dictionary, which includes the action ids to be logged in this level.
Practically, the log levels represent:

• Level 0 - Critical errors only, logging system status messages

• Level 1 - Communication errors

• Level 2 - Incoming / outgoing messages

• Level 3 - Message details (msg id, sender, control sub system, service, ...)

• Level 4 - currently unused

• Level 5 - All messages

Contribute and access logging information

A new message may be inserted into the log system by using the logging system singleton
access and the method newMessage, which looks like code sample in Listing 5.12 (taken from
the incoming message handler):

Listing 5.12: Example for generating log information¨ ¥
from g4ds logg ing import getDefaultLogger , COMMUNICATION INCOMING MSG,

COMMUNICATION INCOMING MSG DETAILS

getDefau l tLogger () . newMessage (COMMUNICATION INCOMING MSG, ’New incoming message ’)

. . . process more informat ion here

getDefau l tLogger () . newMessage (COMMUNICATION INCOMING MSG DETAILS, ’−− MSG ID %s |
SENDER %s ’ %(mid , s ender id))

§ ¦

The log information may either be accessed from the standard syslog log files (if syslog is
enabled) or by accessing the G4DS unique log file (location as defined in global G4DS config
file). If G4DS file logging is enabled, one may also use the maintain environment (see section
5.3.3) for accessing the latest G4DS log entries.

5.3.9. Modularity and Extensibility

Controllers, Interfaces and Implementations - integrate algorithms and protocols Up to
now there was only mapped the knowledge about where protocols have to be used which
way, which keys have to be employed and what algorithms have to be used for encryption,

Chapter 5. Grid For Digital Security (G4DS) 128

decryption and signing. The implementations of the algorithms and the protocols however;
and how to handle and use them has not yet been addressed.

For these purposes a so-called controller concept was introduced. Either of the two, proto-
cols and algorithms, has got its own controller; however, both them are working exactly the
same way. A major benefit of this approach is the flexibility. New protocols or algorithms
may simply be added to the G4DS infrastructure by writing a new module (implementing a
pre-defined interface) and registering the implementation in a config file. The following sec-
tion explains the concept for protocols in detail; changes applied for algorithms are discussed
afterwards.

Controller for Protocols

G4DS is supposed to support a variety of communication protocols. The approach for in-
tegrating them must be adaptive; hence, new protocols should be integratable very easily.
The initial version of G4DS comes with support for SOAP connections and communication
through plain TCP / IP sockets.

The central controller for the protocols is placed in the G4DS main package. It is repre-
sented by a class ProtocolController located in its own module named protocolcontroller.

Figure 5.5.: Controller for Protocols

The extensible bits, however, are located in their own package called g4ds.protocols. First of
all, in there a module protocolinterface is provided containing a class named ProtocolInterface.
This class has no implementation; instead it just provides an interface with names of functions

Chapter 5. Grid For Digital Security (G4DS) 129

and their signatures, which have to be overwritten by any implementation of a protocol.

One of these protocols is the soap protocol. A new module should be created for each
protocol implementation mirroring the name of the protocol; however, there is not really
a naming scheme for this. Afterwards a class named ProtocolImplementation has to be
created in there which must inherit from protocolinterface.ProtocolInterface and overwrite the
functions defined in there. The listen function hereby must create its own thread; otherwise it
would block the entire application. After starting the new thread it should listen for incoming
network connections. Settings therefore may be given inside the config file, where a section
for each protocol implementation may be created.

Finally, each protocol implementation has to be registered with G4DS. This is performed
using the config file inside the g4ds.protocols package. A dictionary is in place, whose key
is the name of the protocol and the value the module. This information is important since
they are used at initialisation time of the ProtocolController for bringing up the protocols
and making them listening for incoming connections.

Another dictionary named endpoints is located within the config file. It is only used before
first bringing up of G4DS and therefore for the initialisation of the local database. In fact, it
tells the initialiser how the addresses for the certain protocols are looking like. The keys for
this dictionary are again the names of the protocols; the values are now a string representing
the protocol specific address. For example, a SOAP address should be a URL, whereby the
TCP socket address should be a combination of DNS name and port number.

The ProtocolController at initialisation time will gain the list of protocols from the config
file in the g4ds.protocols package. By iterating the protocols dictionary it may gain the names
of the modules used for the implementations and due to the common class name and method
names and signatures may initialise the protocol implementations. For later use of protocol
implementations functions are provided for both getting a list of all names of usable protocols
or directly access a protocol implementation.

Controller for Algorithms

The mechanism for accessing the implementations of algorithms is following exactly the same
approach. A controller named AlgorithmController is provided in the main package g4ds in
its own module algorithmcontroller. It comes with an interface for accessing the implemented
algorithms and for producing a list of names of available ones.

A common interface has been defined for algorithms supporting all the features of an
Public Key Infrastructure (PKI) algorithm; namely encryption, decryption, message signing
and message validation. At the initial state two implementations for algorithms are coming

Chapter 5. Grid For Digital Security (G4DS) 130

with G4DS, one for the RSA algorithm and another one ElGamal.
An additional feature has been introduced for the AlgorithmController, namely the one of

loading private keys into the algorithm implementations. This is reasonable for avoiding the
passing of private keys throughout the entire code all the time since a reference to the private
key is maintained inside the algorithm implementations.

5.4. Conclusion

With Grid for Digital Security a robust, secure and reliable communication platform has
been presented, which may be used by a variety of knowledge sharing applications. The
persistence in the database backend allows every node within the grid to maintain its own
view of the network. The implemented concept of communities supports very well with the
attitude of establishing trust relationships between parties. A high grade of adaptability
has been achieved by implementing XML based configuration facilities. The major issue of
security has been adopted in an extensive manner – the utilisation of a private / public key
infrastructure supports with encryption and authentication and is even able to adopt new
algorithms easily. An access control list mechanism prevents any data to be accessed by
non-authorised parties and is even useable for connected applications.

The major point of G4DS is keeping the responsibility to the user, meaning that the
local node itself decides about which party they trust for which kind of operation on which
kind of data. By providing a module for knowledge services to connect against G4DS this
operation may be performed very easily. Last but not least allows the generic and adoptable
implementation of G4DS the utilisation for a wide range of services, only assuming they deal
with the sharing of knowledge within groups.

Inter-Organisational Intrusion Detection (IOIDS) is the application running on top and
making use of Grid for Digital Security in an extensive manner. Its architecture and mode of
operation is explained in very detail in the upcoming chapter 6. Afterwards, the execution of
experiments and a critical analysis of the results will prove the applicability of the combination
of G4DS and IOIDS for the given problems and objectives.

Chapter 6.

Inter-Organisational Intrusion Detection

System (IOIDS)

6.1. Introduction

In chapter 3 the idea and requirements for an architecture for exchanging security related
incident information have been discussed in detail. Chapter 5 provided very detailed infor-
mation about the implementation of the subjacent data exchange topology. The missing bit
in the overall architecture is the application running on top of this network infrastructure,
which will be discussed in detail in this chapter.

The application for incident exchange has been called ”Inter-Organisational Intrusion De-
tection System” due to its nature of exchanging security related incident information across
organisational boundaries. It implements all issues directly related to the distributed intru-
sion detection feature and, extensively, makes use of the communication facilities provided
by the subjacent knowledge grid architecture ”Grid for Digital Security”.

Firstly, an overview is provided of the overall design of the IOIDS application; about its
modules and their interaction. Afterwards, more attention is drawn to the design features
and issues such as complete data flow between two IOIDS instances and database backend
implementation are discussed in great detail. Finally, major components of the implementa-
tion are introduced, which provides an insight to facilities such as interaction with the Grid
system, employment of access control and its integration with G4DS access control (Section
5.2.4) and, finally, handling and converting between internal datastructures, which is stressing
to some extend the implication of XML data formats (Section 2.6.1).

6.2. Design

The Inter-Organisation Intrusion Detection system architecture has been implemented in a
modular way and is communicating with a variety of components for carrying out its work.

131

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 132

Figure 6.1 visualises a high-level description of theses components and the way they are linked
to each other.

6.2.1. Overview of design

Figure 6.1.: Overview of IOIDS architecture

Starting with the core-application of IOIDS, it is the part to keep the components together
and integrate with connected components. The following list provides an overview of these
components and a brief introduction to their responsibilities:

G4DS – The Grid for Digital Security (G4DS) communication platform. Using a G4dsConnector
within IOIDS the system can make use of the facilities provided by G4DS. All traffic to-
wards and from G4DS must be passed through this module. More details for interaction
with G4DS is provided further down in this chapter in section 6.3.1.

DB – The backend persistence for IOIDS is implemented using a unique XML based database
management system. All access to this database has to be performed using the module
DBConnector. The database layout and all concerns for retrieving and inserting data
from and into this database are discussed in great detail in section 6.2.3 within this
chapter.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 133

Syslog – IOIDS is supposed to run as a service rather than as an interactive application.
However, users of the system must be able to trace the system’s behaviour and check
for certain events. Consequently, a logging mechanism has been put into place, which,
most conveniently, is able to integrate with the system event logging system Syslog. A
very similar approach has been introduced for G4DS (section 5.3.8), some more details
are discussed in section 6.3.5 further down in this chapter.

FileSystem (FS) – Some information for IOIDS is stored in the local filesystem. Besides
the extension for the aforementioned logging facilities into a dedicated local log-file the
access to the file system is almost exclusively restricted to read access and supports
the configuration of IOIDS with configuration files and policies. The configuration
itself is a plain text-based configuration file and does not require further discussion, the
utilisation and distribution of the policies, however, is discussed in section 6.3.2 in the
implementation section of this chapter.

IOIDS SoapSy Extension Plug-Ins – The SoapSy database (as discussed in section 6.2.3)
provides facilities for a variety of event generating applications or tools. In order to
support the distribution of this knowledge throughout the communities using IOIDS,
it must understand the structure of each of the extensions. The problem in more detail
and the solution to tackle it are discussed as part of the SoapSy DB introduction in
section 6.2.3 within this chapter.

Whenever IOIDS is started up, it initialises all the connected services and components
using its modules (indicated using curved arrows within figure 6.1). However, information
between these modules may be exchanged directly (rather than the diversion through the
IOIDS module). Straight directed arrows in figure 6.1 indicate these relationships.

6.2.2. Flow of data

A variety of components are working as a unit in order to make IOIDS working. In order to
enhance the understanding of the complex overall system, the following ordered list of actions
examines the process of sending an event from one node to another.

The following assumptions are made before the event can be triggered and sent:

• The Grid for Digital Security (G4DS) communication platform is running and IOIDS
has connected successfully.

• The local node is member of at least one G4DS community (which supports the IOIDS
service) and knows about several nodes within that community, which are also running

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 134

the IOIDS service and is able to exchange messages with them (hence; reach their
endpoints).

• The backend XML database management system is running and IOIDS has successfully
connected against it.

Assuming our system is in a state, which satisfies all the aforementioned requirements, it
is now able to exchange knowledge with other nodes. Basically, there are two different kinds
of messages exchanged within IOIDS, namely:

• IOIDS knowledge requests (a message, requesting more information from other IOIDS
nodes, hitting certain parameters)

• IOIDS information updates (a message, informing other nodes within the IOIDS net-
work to update their information repositories)

Both them are discussed in greater detail in section 6.3.2. For now, we focus on an in-
formation update only, the knowledge request, however, involves the same components and
does not differ in the way a message is passed through the IOIDS system.

 : EventTrigger : DataEngine : SoapSy DB : Plug-in Manager : Snort Plugin : PolicyRepository : G4DS Connector

 : G4DS System

1: Insert Event()

2: Collect New Events()

3: New Event()

4: Request Event Details()

6: LoadEvent()
7: RequestEventExtensionData()

8: ReturnExtensionEvent()
10: ReturnExtensionEvent()

11: RequestActions()

12: Insert Event()

13: SendMessage()

14: SendMessage()

5: LoadExtensionEvent()

 : SoapSy Extension Snort

Figure 6.2.: IOIDS component interaction for triggering new IOIDS message

The following actions are performed within IOIDS in the given order whenever a new
information update is populated into the network (see also Figure 6.2 for the corresponding
UML Sequence diagram):

1. Any of the SoapSy extensions is inserting data into the SoapSy database (This is not
really part of the IOIDS system, however, it is a prerequisite to trigger the event for
IOIDS).

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 135

2. The IOIDS Event Trigger has been observing the database constantly using the DB
Connector and becomes aware of new events and informs the data engine about this
occasion.

3. The IOIDS Data Engine gathers all available core information for the given event and
passes a request to the plug-in-management to gather extension information for the
event.

4. The IOIDS Plug-in Manager attempts to load the corresponding plug-in for the given
extension and, if successful, passes on the request to it.

5. The IOIDS Plug-in loads the extension information from the XML database and passes
the results to the data engine through the plug-in manager.

6. Now it is up to the data engine to assess the data and initialise appropriate reactions.
These reactions are defined in the policy files, which are loaded and parsed. If requested,
an IOIDS event is created (equipped with a classification and destination community)
and passed to the IOIDS DB Connector for insertion into the local data repository.

7. Again, aligned to the defined policies, the data engine may decide to pass the mes-
sage on to certain nodes within the grid system (G4DS). For these reasons, the new
event (optionally including related events such as the initial event triggering the whole
process) are encapsulated in an IOIDS message and passed on to the G4DS connector.

8. The G4DS Connector thereupon equips the message with additional status data and is
passing it on to the connected grid system.

From here, control of the message is taken over by G4DS. This process has been discussed
in great detail in the G4DS chapter in section 5.3.2.

After passing through the G4DS system (and distribution to its defined receivers), the
message will be dispatched on the receivers side within the G4DS system and passed on
to the connected IOIDS service. On the receivers side, the following actions are performed
with the incoming IOIDS message (see also Figure 6.3 for the corresponding UML Sequence
diagram):

1. The grid system dispatches the message as a service message and pushes it up to the
IOIDS system regarding its service identifier.

2. The dispatcher as part of the IOIDS G4DS connector receives the message and after
extracting the status information it informs the Data Engine about the new incoming
event and about its nature of an information update.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 136

7: InsertExtensionEvent()

9: SendMessage()

8: SendMessage()

6: SaveEvent()

5: StorePluginEvent()

3: RequestActions()

4: Insert Event()

 : SoapSy DB : PolicyRepository

2: NewInformationUpdate()

1: NewMessage()

 : DataEngine

 : G4DS System

 : Snort Plugin : G4DS Connector : Plug-in Manager

Figure 6.3.: IOIDS component interaction for receiving new IOIDS message

3. The Data Engine thereupon parses the message and determines appropriate action(s)
using the provided policies.

4. If appropriate, the incoming event is passed on to the local repository using the IOIDS
DB Connector.

5. The DB Connector stores the core information of the event directly, the extension
information however is passed on to the plug-in management.

6. The Plug-in Management attempts to load the corresponding plug-in for the given
extension, and, if successful, passes the extension information to this one.

7. The corresponding plug-in connects to the database through the IOIDS DB connector
and using its intelligence about the structure of the extension data inserts it into the
database.

The Data Engine on the receiver side might trigger further actions besides the local storing.
This way, it might take the new knowledge, correlate it with other event information and
pass on a new event to a community / several communities. This way, the whole process may
run again and again. Consequently, attention has to be paid to the avoidance of circulating
information within the IOIDS system. The IOIDS implementation takes care of this matter
by introducing unique IOIDS message identifiers, which are explained in detail in section
6.3.2 within this chapter.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 137

6.2.3. Database backend

In the review of existing technologies in section 2.8.1 several approaches for making informa-
tion persistent have been introduced and special focus has been put on the variety of existent
database technologies, which are:

• Plain relational database

• Object Oriented database

• XML based database

First of all, each of them is able to support the persistence for the IOIDS architecture in
general. However, the following issues were to be kept in mind for choosing one out of the
available technologies:

• Data encoded as text of various lengths, values in date / timestamp formation and
numeric information should be stored efficiently

• The length of text fields should be supported up to a high value (approx. 100,000
characters) 1

• Data should be accessable easily, and if possible in large chunks; hence, complex data
sets as a unit rather than each to be fetched separately and to be assembled on db
client side

When comparing the attributes of the database types (2.8.1) against the given issues, the
choice for one of the technologies can be made:

• The plain, relational database supports very well with storing and fetching information
encoded in text (of various lengths), timestamps as well as numeric information. Also
the issue of efficient storage of long character sequences is supported very well (for
example using the wellknown datatype VARCHAR). Finally, it is able to support the
handling of structured information; however, there are some shortcomings for their
utilisation:

– The assembling of the database query (in Structured Query Language (SQL) (Groff
and Weinberg (1999))) may either be performed in form of nested select statements
of in form of joins, which appear to be rather complex and difficult in syntax as
the complexity increases.

1This is required due to the need of storing the entire payload data of events

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 138

– In either of the two aforementioned ways of querying the database, the result will
only be ”one-dimensional”; hence, all the information from different relations will
be provided as one result and separation of these are to be performed on db client
side.

• The object oriented database would perform exceptionally well with the storing and
accessing of structured data and is of course as well able to support all the required
simple data types such as text-encoded data, numeric data or timestamps. Also, the
handling of text encoded data of large length does not appear to be a problem for this
kind of databases. However, the employment of an oo database would seem to be rather
artificial since we are dealing with structured data such as events (check section 6.3.4
for details) rather than so-called objects in its original intention.

• An XML-based approach for accessing the database depends first of all on the subjacent
database it is wrapping on concerning its supported datatypes. Assuming, an appro-
priate candidate has been chosen at that point, the support for all required datatypes
with the certain needs in size in particular is not of any concern anymore. A major
benefit of XML databases is their ability to handle complex data; meaning structured
data with relations between entities. However, the datatype, they are working on, is of
course XML, and again, the db client is in charge to formulate its query in XML firstly,
and parse and extend its data from the XML encoded response secondly.

Comparing the shortcomings of the latter two approaches with their advantages in handling
complex data, it was decided that it is worth the effort to implement one of the special
database access encodings (either object oriented or XML based) - finally, the plain relational
db query strings have to be assembled too and their response parsed and information extracted
as some point.

The decision was finally made for the XML based approach due to the following reasons:
Firstly, XML has been widely employed for this project already and several parsers and
wrappers have been produced in the meantime, which supports the assembling of queries
and the parsing of replies. Secondly, there has been developed a light-weight XML based
RPC access methodology for databases within the research group (Xynos (2005)) which
provides very simple access facilities to any subjacent database (see section 6.2.3 for details),
which brings up the third justification for the choice: due to the implementation of the
aforementioned database within the research group, a number of extensions for a variety of
event generators have been developed and are inserting event data into the database. This
supports the objective of handling information from a variety of third party event generators
(section 3.3.4) and is discussed in greater detail in section 6.3.2.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 139

Database design

After the decision has been made for a database access approach, the design for the database
itself has to be developed. The following issues have been arising when dealing with this
concern:

• The database design must support the persistence of computer security incident event
information, including information about their involved parties, the type of the attack,
date and time information and much more. A great collection of information involved
in these environments may be found in (Debar et al. (2005) and Demchenko (2003)).

• The information should be structured and broken down into its components. (e.g.
different relations for the event itself and its information about the victim, observer,
etc.)

• Relations should be able to be maintained between several events. (e.g. one event
might be derived from several other events, which should be able to be pictured in the
database design.)

• IOIDS is supposed to support a wide range of third party event generators. All infor-
mation, which may not be able to be normalised into the db event core system should
be able to be stored in some extensible area within the database. This access should
be provided easily and efficiently and must allow the maintaining of links between the
extension information and the actual event.

In the information security research group within the univerity many research has been
undertaken into the areas of unification of security related incident event data over the past
years. (Avourdiadis and Blyth (2005a,b)) Many efforts have been put in the development of
a database design, which is able to store information from a variety of data sources on the
one hand, but is still kept simple on the other. The following section explains the idea of the
new approach called SoapSy to some extend and mirrors its capabilities against our issues.

Overview for SoapSy database

According to (Avourdiadis and Blyth (2005b) SoapSy) is defined the following way:

[SoapSy represents a] process of data unification and fusion into an abstract re-
lational schema. The function of this abstract schema is to convert event related
data into information relating to security incidents. A security incident is simply

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 140

a representation of a grouping of event that is characterised by a common set of
attributes.

This way, SoapSy provides a central data repository for logging security incident events
from several locations from a variety of different event logging applications into it. The
third party event generator has to normalise its event information in a way, that it may
be integrated with the SoapSy event data model. A complete copy of the SoapSy database
design is provided on the resources CD.

One can see, that the database design is made up by three dedicated parts, namely:

• The SoapSy Core

• The SoapSy Extensions

• The SoapSy Abstract

The Core part of the database design is holding the information all events have in com-
mon, such as event source, destination, target and the like. All applications inserting data
into SoapSy must normalise their event data in a way that they provide the SoapSy core
information. The extension part of SoapSy in contrast is supposed to support the storing of
data of the applications, which can not be covered in the core part. Consequently, for each
type of event generator (such as Syslog, Snort or Windows Event Log) there will exist an
extension in the SoapSy extension part. The (extension) type of an event may be determined
by the field eventtype. Finally, the abstract part of the SoapSy database layout introduces
the concept of incidents. Following (Avourdiadis and Blyth (2005b)) their responsibilities
are:

Incidents are introduced as a mean for describing events that are related to each
other in such a way that can describe a series of actions towards the successful or
not completion of a goal.

At the current stage, the abstract part of the SoapSy approach is not deeply developed
and there is not known any application, making use of this part of the database. Later
developments, however, may employ decent data merging and data mining technologies in
order to incorporate with relations provided in there. For now, they are not of any use for
the IOIDS system since we are dealing with single events only; consequently, the abstract
part of the SoapSy has not been employed for IOIDS.

Considering the issues discussed at the beginning of this section, the SoapSy database
design suits very well the needs for persistence of IOIDS event data. Last but not least the
ability to support a variety of third-party event generators easily encourages the employment
of this approach.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 141

SoapSy extensions

SoapSy extensions have been mentioned in the previous section when talking about the design
of the SoapSy database. However, since IOIDS needs to store additional information for each
event in the SoapSy database as well, some more detailed information will be provided in
this section.

As stated before, SoapSy extensions are supposed to store all the information for one event
type (for one event generating application), which can not be covered with the core of the
SoapSy DB layout. In the experiment for IOIDS this idea is explained in greater detail for
a SnortDB event logging system, whose event information is taken and transformed in order
to insert into the central SoapSy data repository. (see section 7.3.3)

SoapSy extension for IOIDS event information IOIDS itself deals with information for
each event, which can not be integrated with the core of SoapSy. These include:

• The community, this event belongs to (check section 6.2.5 for more information)

• The classification of the event (check section 6.2.5 for more information)

• The timestamp of receiving the event (rather than occurrence on the observer’s and
destination’s side)

• Initial source of the IOIDS event

• Direct sender of the event

• Relations with other events within the SoapSy system

For these reasons, IOIDS maintains its own extension within the SoapSy DB Extension
sub schema. The following relations are introduced within this extension to support this task
(see also Figure 6.4):

IOIDS-CLASSIFICATION maintains a normalised list of IOIDS classifications with their
codes and descriptions

IOIDS-PEER is a result of db normalisation and represents the super class for IOIDS-
SENDER and IOIDS-SOURCE; in fact, it maintains the link to the G4DS entity infor-
mation, namely the G4DS member identifiers

IOIDS-SENDER information about the sender of an IOIDS event

IOIDS-SOURCE information about the initial source of an IOIDS event

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 142

Figure 6.4.: SoapSy IOIDS Extension DB Schema

IOIDS-RELATION-TYPE information about types of relations between events (e.g. derived
events, or parent events - for more information check section 6.3.2)

IOIDS-RELATION for maintaining relations between one IOIDS event and none, one or
more further SoapSy events

IOIDS-EVENT the major entity for an IOIDS event; maintains the link to the actual SoapSy
(core) event and maintains links to the other relations of the IOIDS extension

On the resources CD the complete collection of additional relations including their at-
tributes employed for storing IOIDS extension information in XML representation is shown.
The syntax of this file is aligned to the XML database approach and is explained in greater
detail in section 6.2.3.

Integration with IOIDS and modules for Extensions The same way, IOIDS is making use
of SoapSy extension facilities other event generators are doing so (check section 7.3.3 for an
example using SnortDB event data). Consequently, for each event inserted into the SoapSy
database there is always exactly one entry in the event table in the SoapSy Core and exactly
one entry in one extension of the SoapSy extension part. IOIDS itself knows about the layout
of the SoapSy core and of course about its own extension. This way, it is able to carry core

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 143

information (normalised information, each event generator has to provide) through the IOIDS
network together with IOIDS status information. For detailed information, however, for each
of the other extensions (such as Syslog, Snort, Windows Event Log) it needs to understand
their language, to say, the database layout of their extension.

For these reasons, a plug-in mechanism has been put into place. Referring to figure 6.1 on
page 132 these ones are connected to the IOIDS core using a plug-in manager. Each of them
is responsible for the following tasks for its corresponding SoapSy extension:

• Collect additional extension information for an event on request of the data engine

• Generate XML encoded information from the available extension information to be sent
to other IOIDS nodes as part of the IOIDS event messages

• Parse the incoming extension information and process it into the internal data structure
for this extension

• Write extension information into the local database

The plug-in manager is able to determine the corresponding extension (and, consequently,
the plug-in) by evaluating the attribute EVENT-TYPE within the Core event relation. The
link between the extension event and the core event, however, has to be maintained within
the extension event relation. (For example the IOIDS extension relation IOIDS-EVENT
maintains a foreign key constraint to the core event table with an attribute named event-id.)

The modular approach of handling the extensions enables IOIDS to exchange events from
other subsystems via IOIDS channels. As soon as a plug-in is available on the sender’s side,
the extension information will be included in the IOIDS event message; if, additionally, a plug-
in is available for the extension on the receivers side, it is able to integrate this information
with the local data repository. However, if the plug-in is missing on either or both sides, the
core information can still be exchanged between all nodes. Some further issues of integrating
data from third party event generators are discussed further down in this chapter in the
implementation part in section 6.3.2.

Connect to database via SOAP RPC

By now, the type of the database management system and the database design have been
discusses in very detail. Not yet addressed was the mechanism to connect to the database
and access its information. It was stated before that IOIDS is making use of an XML based
database as a backend data repository. The access to this repository is gained through a
light-weight remote procedure call (RPC) interface, which has as well been developed within

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 144

the Information Security Group of the University. It is working with technologies such as
XML and the Simple Object Access Protocol (SOAP) (Box et al. (2000)) and provides a very
simple, but nonetheless, extremely powerful remote interface for accessing the database.

Features of XSM and its way of working are discussed in detail in (Xynos (2005)); however,
the following list gives a brief overview:

• XSM listens on a TCP port for incoming SOAP connections

• Every request to XSM must be encoded in XML

• XSM separates database requests (SELECT) and database modifications (updates /
inserts)

• Results for the database transaction in the backend are returned in XML encoding as
well; in the case of a modification this would be the primary key for the top-level event,
in case of a request in contrast, the result set is returned in XML encoding

• Complex data may be inserted using a specific XML structure aligned to the constraints
between the relations

• Basic implementations for fetching complex data are in place; implemented using joints

• XSM needs to know about the database design it is working on; consequently, an XML
encoded descriptions of all relations with their attributes and constraints has to be
provided (as compensation, the corresponding SQL statements for creating the entities
within database can be derived from it using XSM tools)

• XSM may be configured to be used with any relational database (including type con-
version in both directions)

In the current stage, the information about the database design has to be provided in a
single file; consequently, database information for any SoapSy extension to be integrated has
to be added to this file. (XSM is still under development and the distribution of database
information across several files is thought to be covered in future developments). However,
the complete copy of the XSM file for the database design of SoapSy with extension for IOIDS
and SnortDB can be found on the resources CD.

Fetch latest events

In the overview for IOIDS (section 6.2.1) the need for IOIDS to be aware of the arrival of
new events in the core event database has been mentioned already. The mechanism handling
this issue should satisfy the following requirements:

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 145

• The notification of IOIDS should be in near-realtime (”only” near-realtime because the
entire IOIDS topology cannot work in realtime anyways due to constraints showing up
when using the internet such as latencies and the like)

• Events must not get lost; even if the system is down for a certain time or must be
rebooted for some reason

• The fetching of data should be handled efficiently; hence, even on occasions of high
data volume to be reported, the traffic caused by the database communication should
be kept as small as possible.

• The process must be performed accurately and events should arrive in order of their
arrival in the database.

When examining the attributes of the database four different approaches become obvious
for performing this task, namely:

• Evaluation of the database internal object ID (OID)

• Evaluation of the timestamp of the events

• Evaluation of the event identifiers of the events

• Trigger in conjunction with a stored procedure on the database, finally invoking a
function on the (local) observing system

The former three approaches have many things in common, whereby the latter one follows
a totally different strategy to achieve the goal. These ones are:

• The action is always initiated on the database client side

• Some kind of status information must be maintained on the client side (the lastest
timestamp of the latest id)

• The value for the attribute (either one of the IDs or the timestamp) for event n must
be greater than the one for event n-1

One major advantage of this kind of approach is its simplicity of implementation. In
frequent time intervals, the IOIDS trigger is performing a request to the database and asks
for all entries, whose id or timestamp is greater than a certain value. Another advantage
here is the ability to fetch several events at the same time, and with the option to change
the frequency of the fetch cycle, it becomes very scalable. Finally, by making the status

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 146

information about the latest id or latest timestamp persistent somewhere in the local file
system, no data would get lost whenever the system is going down for some reason; meaning,
all events arriving in the meantime can be fetched with a delay. Last but not least, it would
be simple to support a group of IOIDS triggers, since each of them would maintain its own
status information. The major shortcoming of this approach is first of all a design issue:
although, trigger functionality is provided on the database, it is evaded and implemented
using a ”software trigger”. Furthermore, there would be overhead on the network for checking
for new events, whenever no new events have arrived since the last check.

The attributes of the datebase trigger implementation are almost opposite to the ones
aforementioned for the software trigger. First of all, the db trigger looks to be a sober
implementation of the given problem. Furthermore, it would tackle the issue of near-realtime
best, since the function would be invoked by the trigger right after the event has been inserted.
The major shortcoming for the datebase trigger is its complexity of employment, which is
getting even worse due to the utilisation of the XML based data base approach. Literally,
this trigger would need to bypass the XML db interface, which would interfer with a clear,
modular software architecture. Although, not causing any overhead when no event is arriving
in the database, the trigger implementation will fire every time for each event, which might
cause problems when a high number of events arrive in a relatively short time frame at the
database. Last but not least, it will be difficult to register several instances of IOIDS with
the trigger or define a trigger for each of them.

Since the realtime issue is not pushed too far and the potential break of the design of the
overall architecture weighs heavier than the soberness of a single component, the decision
has been made for the software trigger. In particular the event id has been chosen for the
problem due to the following (potential) problems with the other two attributes:

• An event arriving at the central SoapSy database might be equipped with a timestamp
smaller than the one for an event, which is in the database already due to differences in
time on several connected nodes or the like. After all, the timestamp attribute appeared
not to be an ideal candidate for a reliable identifier for new events within the database
relations.

• Although the database object identifiers are known to be increasing all the time, this
behaviour is depending on the implementation of the database management system
itself. The event id, however, is declared in the database design as serial, which ensures
the requirement for the attribute being always greater for event n than for event n-1.

Finally, the features and performance issues of the implementation chosen are examined in
the experiment part and described in part of section 7.3.2.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 147

6.2.4. Message Formats

This section is dealing with the encoding of information, exchanged between the IOIDS nodes
on the network. First of all, as employed on many other occasions within the project, an
XML based approach has been chosen due to the well-known and widely explained reasons.

Afterwards, several well-known formats for exchanging computer incident related informa-
tion have been evaluated against their use for exchanging IOIDS data. The outcome of these
evaluations are basically, that it is possible to squeeze IOIDS data into well-known formats
such as IDMEF (Debar et al. (2005)) or IODEF (Demchenko (2003)); however, the result
would be that the source of information squeezes as much knowledge as possible in the known
fields of the standard protocols and puts all the remaining information in self-defined exten-
sions of the protocol. The receiver(s) of the message would take all this information, only
concatenate it in a way to bring it back into the initial database aligned layout (see section
6.3.4 for details). At the location of employment of the message format, it is not intended to
be accessed by any software but IOIDS itself. These reasons overweighed the always desired
aim to incorporate well-known standards and, finally, an IOIDS specific XML based message
format has been put into place, which is pretty much aligned to the internal data structure of
IOIDS, an this way, to the backend database. The following sections explain this dataformat
in detail; and furthermore provide information about options to integrate knowledge from
the aforementioned third party event generators.

In the objectives (section 3.3.4) the requirement for two different types of messages has
been discussed in detail; namely the knowledge requests and information updates. Each of
the following two sections is explaining one type in detail.

Information updates

Information updates are generated by the data engine, whenever the local node decides to
inform other nodes of the IOIDS network about a certain state of the data repository. (This
behaviour depends on the policies in place and is discussed in more detail further down in
this chapter in section 6.3.2.)

The IOIDS information update message must always start with a top-level IOIDS tag. An
attribute of this node with the name type must be set to value update in order to identify
the IOIDS message as an information update. (This distinction is also done before using
action strings on the interface from the IOIDS application to G4DS; however, it ensures that
messages have been dispatched appropriately. See section 6.3.1) The remaining part of the
IOIDS message is split into two parts:

• The major IOIDS event

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 148

• None, one or several related events

A complete IOIDS information update message including one related event of extension
type snortdb is provided on the resources CD. An overview of the final structure is shown in
listing 6.1 (attributes are indicated with a leading asterix):

Listing 6.1: Structure of IOIDS information update request message¨ ¥
i o i d s

∗ type=’ update ’

i o i d s e v en t

∗ a l l a t t r i b u t e s o f i o i d s event such as timestamp , community , . . .

event (Core event for the major IOIDS event with a l l i t s a t t r i b u t e s and r e l a t i o n s)

remaining IOIDS extens i on r e l a t i o n s such as sender , source , c l a s s i f i c a t i o n

r e l a t i o n s

r e l a t i o n 1

∗ type=’ parent ’ (i n d i c a t e s the r e l a t i o n type to the i o i d s major event)

p l a inevent (p l a i n event without any extens i on in fo rmat ion in case the r e c e i v e r

does not understand the extens i on)

event (Core event for the r e l a t e d event with a l l i t s a t t r i b u t e s and r e l a t i o n s)

ex t ens i on

∗ type=’ extension name ’ (name o f the extens i on such as SnortDB , Sys log or

WinEventLog)

extens i on s p e c i f i c in fo rmat ion for the r e l a t e d event

r e l a t i o n 2

. . .

r e l a t i o n 3

. . .

. . .

r e l a t i o n n
§ ¦

As shown in the listing, there must only be a single major IOIDS event, but a number
of related events may be attached to it. The following two paragraphs provide some more
detailed information about the two parts of an IOIDS update message.

Major IOIDS event The major IOIDS event carries all information available in the database
for the actual event to be populated. Its structure is completely aligned to the internal IOIDS
data structure and therefore to the SoapSy database layout for IOIDS extensions. (see section
6.3.4). This way, it can be assembled easily using a generic XML wrapper and parsed on
the receiver’s side using a generic parser / information extractor. Besides the information
about the IOIDS extension, of course it also needs to include the information about the
corresponding SoapSy core event, which is carried inside the IOIDS extension event message.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 149

Related events As previously stated, none, one or more related events may be carried
inside one IOIDS information update message. They have to be wrapped by a relations tag,
the order of the related events does not matter. Each relation has to be equipped with a
type attribute, which indicates the type of relation between the major IOIDS event and the
current related event. Inside each of the relations, the event is carried twice, ones including
the extension information and ones without extension information; hence, the plain SoapSy
core event. The plain event is compulsory, the extension event in contrast is optional. (This
is for the reason that the sender might not support the extension of the given event itself
or does not want to provide all the details regarding its employed policies.) The plain event
again contains all attributes and relations gained from the SoapSy core for this event. The
extension event itself contains all the information from its corresponding extension within the
SoapSy database, but should nevertheless contain all the core information as well; however,
this is left to the implementation of the plug-in for this extension. (section 6.2.3 and 6.3.2)

There is no reply for information updates. If any node requires more information about
this event or some kind of related knowledge, it has to generate a knowledge request itself.
(see following section 6.2.4)

Knowledge requests

Knowledge request messages are generated whenever the local node (in fact the data engine
as part of the IOIDS core system) needs more information about a certain event, events from
a certain timeframe or maybe events involving parties from a certain address range. In fact,
the group of events requested may be defined using the following parameters:

• Events occurring within a certain timeframe

• Events, where one or several of the involved agents (source, destination, observer or
reporter) hits certain address information such as a certain IP address range or a DNS
name

• Events of a certain classification

• Events, which were reported by a specific extension (evaluation of the event type)

For implementing IOIDS knowledge requests, two messages are required, namely the knowl-
edge request query and the knowledge request reply. The knowledge request query defines the
aforementioned parameters, whereby the knowledge request reply carries the set of events,
suiting the given requirements. Both them are encoded in XML and have the ioids tag as

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 150

root element. In detail, each of them is explained with their structure in one of the following
sections.

Knowledge request query As implemented for the information update, the knowledge re-
quest root element (ioids) must be equipped with an attribute called type. In case of an
knowledge request query, it must be set to request-query. Afterwards, the conditions for the
query are included in XML encoding.

For each condition to be taken into account, the following information must be transmitted:

• The name of the attribute

• The value for this attribute in the data format suiting the aforementioned attribute

• An operator, saying, how to compare the value of the request with the data in the data
repository.

Consequently, each condition entry looks the as described in listing 6.2:

Listing 6.2: Format of an IOIDS information request query condition¨ ¥

<cond i t i on a t t r i b u t e=” attr ibute name ” operator=”operator name”>VALUE</ cond i t i on>

e . g .

. . .

<cond i t i on a t t r i b u t e=” s ou r c e i p ” operator=” equa l s ”>192 . 1 6 8 . 0 . 5 / 2 55 . 2 5 5 . 2 5 5 . 0</

cond i t i on>

. . .
§ ¦

The format of the value depends on the given attribute. In case of an DNS name, for
example, this should be a string. Whenever an IP address is expected, however, a couple of
IP address / netmask (optional) should be provided. For a date / time specific attribute the
well-known format for timestamps must be provided.

The operators are the same for each of the attributes. Currently supported operators are:

EQUAL equals

NOTEQUAL - unequal

GREATER - greater than

SMALLER - smaller than

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 151

Finally, the various conditions must be brought into context; hence, the logical relationship
between them has to be mirrored within the message. The only allowed relationships between
conditions are:

• logical AND

• logical OR

In order to support nesting of conditions with different relationships (e.g. one node wants
to request all events for a certain IP address range as source of the event but occurring on
two different timeframes), a grouping concept has been introduced. Each group is equipped
with a relationship identifier (either OR or AND). Each item within a group might either be
a condition (as described above) or another group with is own relationship identifier. (see
also the example given in listing 6.3)

Using the explained facilities, a request query could be created, which shall cover all events
attacking IP addresses in either of range 192.168.0.0-192.168.1.255 or of range 192.168.10.0-
192.168.10.255 in the time frame covered by December 2005. The result for this query is
shown in listing 6.3.

Listing 6.3: Structure of example of an IOIDS information request query condition¨ ¥
i o i d s

∗ type=” request−query”

cond i t i on s

group

∗ r e l a t i o n s h i p = ”AND”

cond i t i on

∗ a t t r i b u t e=” event . timestamp”

∗ operator=”GREATER”

2005−12−01 00 : 0 0 : 0 0 .00000

cond i t i on

∗ a t t r i b u t e=” event . timestamp”

∗ operator=”SMALLER”

2005−12−31 23 : 5 9 : 5 9 .99999

group

∗ r e l a t i o n s h i p=”OR”

cond i t i on

∗ a t t r i b u t e=” event . d e s t i n a t i o n i p ”

∗ operator=”EQUAL”

192 . 1 6 8 . 0 . 0 / 255 . 2 5 5 . 2 5 4 . 0

cond i t i on

∗ a t t r i b u t e=” event . d e s t i n a t i o n i p ”

∗ operator=”EQUAL”

192 . 1 68 . 1 0 . 0 / 255 . 2 5 5 . 2 55 . 0
§ ¦

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 152

Knowledge request reply After the incoming IOIDS knowledge message request has been
processed inside the IOIDS data engine, the result set of events (hitting the given filter
criterion) are assembled into a knowledge request reply and sent back to the sender of the
initial knowledge request query.

As employed for all IOIDS messages, the root element of the XML encoded messages must
be assigned the tag IOIDS. The compulsory attribute for this element named type must be
set to the value request-reply. Inside this root element follows a single instance of the element
results, which indicates the beginning of the result block. This element is equipped with an
attribute count, which carries the total number of events sent in this message. Each event is
wrapped inside a result element and is provided either in one or two representations; namely
the SoapSy core event and the extension event. (The concept has been introduced earlier
on in this section when talking about information updates) Consequently, the listing of the
plain event is compulsory, the extension event information, however, is optional.

Listing 6.4 visualises the structure of an IOIDS knowledge request reply message. Again,
attributes of nodes are shown with a leading asterix.

Listing 6.4: Structure of IOIDS knowledge request reply message¨ ¥
i o i d s

∗ type=’ request−r ep ly ’

r e s u l t s

∗ count

r e s u l t

p l a inevent (p l a i n event without any extens i on in fo rmat ion in case the r e c e i v e r

does not understand the extens i on)

event (Core event f o r the event with a l l i t s a t t r i b u t e s and r e l a t i o n s)

ex t ens i on

∗ type=’ extension name ’ (name o f the extens i on such as SnortDB , Sys log or

WinEventLog)

extens i on s p e c i f i c in fo rmat ion f o r the event

r e s u l t 2

. . .

r e s u l t 3

. . .

. . .

r e s u l t n
§ ¦

All information provided within such a message must be protected appropriately. These
issues, however, are not part of the message format discussion, instead, they are discussed
further down in this chapter in section 6.3.2.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 153

6.2.5. Security Policy

The requirement of protecting the knowledge of the IOIDS system adequately has been
outworked as a major issue in the objectives (section 3.3.4). Many efforts have been put on
researching into the definition and application of security models - a selection of very popular
representatives has been introduced in section 2.5.3.

As one representative, the Chinese Wall Security Policy (Pfleeger and Pfleeger (2003))
has been identified as a very popular and widely implemented security policy. Due to its
protective approach, its support for communities and its highly common acceptance it has
been chosen as the base for the security policy for IOIDS. However, there exist some problems
with the Chinese wall security policy, which requires slight modifications for its application
to IOIDS, namely:

• The dynamic environment does not suit our requirements at all (the decisions about
access to objects is based on previous accesses to other / same objects). For IOIDS,
however, the status of objects (events) are not dynamic at all - ones they have been
assigned a community and a classification, they will not change anymore.

The application of a status for each object would have been to heavyweight. Instead, an
object may exist in different communities (domains) at the same time by simply inserting
another copy of the object. Each of these may then be equipped with a different level of
protection, saying its classification.

Trust

Trust has been identified as a major issue for the implementation of mechanisms to exchange
this sensitive security related information. Trust can only be established between two parties;
the technology in its nature is only a tool, which has to align to the out-laid trusting guidelines
and restrictions; hence, it is in charge to implement sufficient technologies which are able to
support the requested policies.

IOIDS supports these requirements by an implementation of communities and classifica-
tions, working out the following way:

• Communities have been introduced in G4DS already. They form a group of parties,
which maintain certain trust levels between each other. These communities are mapped
into the IOIDS system; literally, each piece of information within IOIDS (which should
normally be made up by an event) must always belong to exactly one community. It is
only valid for this particular community and must not escape this distribution domain.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 154

Whenever an event shall be distributed throughout several communities, one IOIDS
message has to be created for each of them.

• Classifications are introduced as a novel approach in IOIDS layer. Each piece of infor-
mation within IOIDS must be equipped with a classification identifier. Classifications
are unique throughout the IOIDS system and range from private (id 0 - only for the
local node) to public (id 10 - information accessable for all members within all commu-
nities). This allows the maintenance of information of private nature as well as public
nature within the same data repository. The classifications are discussed in detail in
the following paragraph.

The community of a message as well as the classification are stored directly together with
the actual event information within the central database as part of the IOIDS event. (see also
IOIDS database layout in section 6.2.3) This tight relation between the information makes
up the base of protecting the knowledge of the local node.

In practise, each piece of information is tagged with the following information when stored
on a node:

• Origin of the message (includes both, the actual sending node of the message and the
Trusting Community it was created in)

• A classification for the message itself, which provides information about the ways this
message is supposed to be used.

The origin may be determined easily by processing header information of the message
which has been sent before. (However, a sending node might be member of several TCs, this
way it is required to define into which TC the current message is sent.) The classification
for the message must be defined by the sending node. (For more details about available
classifications for messages also check section 6.2.5) Consequently, the following formalism is
introduced:

k = {m, s, t, c}

These symbols represent the following information; a piece of Knowledge (k) is made up
by the combination of:

• The message itself (m)

• A source for this message (s)

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 155

• A Trusting Community of this message (t)

• A classification for the message (c) defining, how to handle, process and distribute it

If a newly created knowledge chunk kx is considered, all its related information is repre-
sented the following way:

Kx = {Mx, Sx, Tx, Cx} −→ kx

with:

• Mx = {m1,m2, ..., ma} with a as number of messages,

• Sx = {s1, s2, ..., sb} with b as number of sources,

• Tx = {t1, t2, ..., tc} with c as number of TCs involved and

• Cx = {c1, c2, ..., cd} with d as number of classifications.

Simplified, Figure 6.5 visualises the model employed for managing knowledge within the
IOIDS architecture. It does not mirror the entire complexity of the model since the relations
between the knowledge chunks have not been provided with the figure.

Figure 6.5.: IOIDS Knowledge Management

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 156

A knowledge pool (K) is made up by the sets of messages (M), Sources (S), Trusting
Communities (T) and their classifications (C). Pieces of information in the knowledge pool
have relations between each other. In fact, no item in the knowledge pool may exist multi-
ply; hence, each message is put into relation with its corresponding sender, source Trusting
Community and Classification.

Whenever a new message is being created, a certain subset of pieces of knowledge is in-
volved. The overall subset is named Kx with all its members (or sub-subsets) Mx, Sx, Tx

and Cx for the messages, sources, trusting communities and classifications involved for cre-
ating this new message. In an example as described in Figure 6.5 three source messages
(Mx = {M3,M5, M7}) with their 3 source addresses (Sx = {S2, S5, S4}) from two different
communities (Tx = {T2, T4}) and classifications (Cx = {C1, C3}) have been involved. Finally,
the entirety of the knowledge subset Kx results in the new piece of knowledge kx. The new
piece of knowledge kx comes as a unit of message, source node, destination community and
classification; hence, at the same time new entries will be asserted into the data repository.
(At least one new entry for the message has to be inserted; the values for classification,
Trusting Community and Source Node may be existent in the database already.)

By storing the information about the source, the trusting community and the classification
of a message together with the message itself, it can be made sure that knowledge never
escapes from its supposed distribution domain.

Concept of Sanitising

In section 3.3.4 within the objectives it has been made clear, that in order to protect an
organisation’s information appropriately without preventing too much knowledge from being
exchanged the garbling of knowledge is a widely discussed approach. Often, this identity
related information is not even required at the receivers side for recycle the information; for
instance does the existence of the source IP address for a snort event not impact the processing
at the receiver’s side as long as they may put corresponding information into context.

IOIDS integrates features for garbling in its conceptual design; the implementation on
network communication level however, does not yet support this kind of feature. (See also
ideas for future work in section 8.3) Basically, the principal aim to protect the identity of the
origin of a piece of knowledge is coming in two stages:

• Prevent the receiver or any involved party from gaining knowledge about the identity
by gathering and evaluating network traffic

• Do not enable anybody reading the presented information to backtrace knowledge
within the message to the origin. (For example it is very likely that event genera-

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 157

tors such as intrusion detection systems put address information about the attacked
victim into the generated event.)

The design is based on these two stages too. The implementation of the former aim has
been named anonymising and must take place on G4DS layer. The latter one is named
sanitising and has to be carried out on application layer, saying, within IOIDS itself. As
previously stated, the idea only exists in its conceptual design - it has been discussed in great
detail in the publication (Pilgermann and Blyth (2004, ISBN: 0-9547096-2-4)). For now it
was only to make clear the necessity of dedicated classification levels for supporting sanitising.

Finally, sanitising may only be performed by the origin of the message itself. No other
node is able or allowed to perform sanitising on behalf of the source node. Even, if no
sanitised version if available (or not yet available), but sanitised versions are the only ones to
be forwarded, the actual (un-changed) message must then not be used to create the derived
message.

Determine destination community

Before the classification of a message can be calculated its destination Trusting Community
has to be appointed. Goal is the highest possible propagation of the knowledge without
violating any restrictions made up by the classifications rules of all the messages in the
knowledge pool Kx for the new message.

Source Trusting Communities as well as classifications of input messages have to be exam-
ined. (Sanitising bits of the classification rules do not need to be taken into account for this
procedure since it is assumed that the Trusting Community of a message would be garbled in
the process of sanitising). The following rules are applied to the knowledge pool in exactly the
given order in order to determine the destination Trusting Community of the new knowledge
chunk kx.

1. There is at least one message in the knowledge pool, whose classification is specified as
C0 - Local confidential (including its derived grades for sanitising C1, C2 and C3). The
new message will not have any destination Trusting Community. (This message (or
any derived message) must not be send to any party; hence, the applying of a Trusting
Community is superfluous.)

∃x ∈ Cx |x ∈ {C0, C1, C2, C3} −→ tx = n.a.

2. If there are at least two messages with classification C4 - Destination Confidential (or
one of its derived grades for sanitising C5 and C6) being originated in two different
Trusting Communities, then there won’t be any destination TC assigned for kx.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 158

∃ (c1, c2, t1, t2) ∈ (CX , CX , TX , TX) | c1, c2 ∈ {C4, C5, C6} & t1 → c1 & t2 → c2 & t1 6=
t2 −→ tx = n.a.

3. There are at least two messages with classification C7 or C8 - Community Boundary
Protected whose source TCs are different. – No destination TC will be assigned.

∃ (c1, c2, t1, t2) ∈ (CX , CX , TX , TX) | c1, c2 ∈ {C7, C8} & t1 → c1 & t2 → c2 & t1 6=
t2 −→ tx = n.a.

4. There is at least one pair of messages with classification C4 (or C5, C6) for the first
one and classification C7 (or C8) for the second one, which are originated in different
Trusting Communities. – No destination TC may be applied.

∃ (c1, c2, t1, t2) ∈ (CX , CX , TX , TX) | c1 ∈ {C4, C5, C6} & c1 ∈ {C7, C8} & t1 →
c1 & t2 → c2 & t1 6= t2 −→ tx = n.a.

5. All messages in the knowledge pool are originated in the same Trusting Community. –
The destination Trusting Community equals the one of the source messages.

t = α ∀ t ∈ Tx −→ tx = α

6. Messages from different Trusting Communities are involved; however, only exactly one
message is marked with classification C4 - Destination Confidential (or one of its derived
grades C5 and C6). – The destination Trusting Community is the one of the message
in relation with trusting community C4.

∃ (c, t1, t2) ∈ (Cx, Tx, Tx) | c ∈ {C4, C5, C6} & t1 → c & t1 6= t2 −→ tx = t1

7. All messages with protection C7 / C8 - Community Boundary are originated in the
same Trusting Community.

t = α ∀ (t, c) ∈ (Tx, Cx) | t → c & c ∈ {C7, C8} −→ tx = α

8. All messages are public. – The destination TC is the one with the most entries for
processed messages with this Trusting Community.

c = C10 ∀ c ∈ Cx −→ tx = α |α = max (mx, tx) & mx → tx

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 159

Determine classification

In order to determine the classification for a new piece of knowledge two situations have to
be considered:

• A single message has been processed or several messages have been processed in order
to create the piece of knowledge; but all the messages are with the same tags and from
the same source.

• Several messages have been processed in order to create the piece of knowledge, pro-
cessed messages come from different sources (nodes or communities) and have different
tags applied.

The former case is easy to handle; however, the latter one requires more efforts in order
to align to distribution policies. The following rules are applied to determine a classification
for a new message regarding to the sources and classifications of all messages being used for
creating this new message (the rules in here are ordered, this way the first rule applicable for
the knowledge pool of the new message Kx will be used and the processing is terminated).

Overview classifications Classifications for messages are ordered, a classification with a
higher number represents a lower protection than one with a low number; hence, the classi-
fication 0 stands for the highest protection of the message ever - meaning, only the creator
itself is using and processing the data.

ID 0 – Private – Knowledge is exclusive for the local node. Even nodes with total trust will
not be able to access information in here.

ID 1 –Local Confidential, but Sanitised for Third Party The actual message needs to be
protected completely, however, sanitised messages may be sent to destination party.

ID 2 – Local Confidential, but Sanitised for Community

ID 3 – Local Confidential, but Sanitised for Everybody

ID 4 – Destination Confidential Information from this message may only be used and pro-
cessed on the receiver’s node itself. Neither the message nor any message which is
(partially) derived from this message may be sent to any other party.

ID 5 – Destination Confidential, but Sanitised to Community

ID 6 – Destination Confidential, but Sanitised to Everybody

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 160

ID 7 – Community Boundary Protected This message may be circulated throughout the
source Trusting Community. Any derived message may be handled the same way;
however, neither the message itself nor any (partially) derived message may ever leave
the community boundaries.

ID 8 – Community Boundary, but Sanitised to Everybody

ID 9 unused

ID 10 – Public – Knowledge may be read by any node.

Determination in two stages The classification determination is performed by two progres-
sive stages. In the first stage sanitising options will be left behind and only the major class
(ctmp) will be calculated. Four major classes are available; namely CtmpA - Local Confiden-
tial, CtmpB - Destination Confidential, CtmpC - Community Protected and CtmpD - Public.
The second stage takes into account all the sanitising information and will this way calculate
the final destination classification.

1. At least one message of the knowledge pool is classified Local confidential C0 or Local
confidential with any of the Sanitising options (C1, C2 and C3). – The temporary
classification of the new message is CtmpA - Local confidential.

∃x ∈ Cx |x ∈ {C0, C1, C2, C3} −→ ctmp = CtmpA

2. At least one message of the knowledge pool is classified Destination Confidential C4
or Destination Confidential with any of the Sanitising options (C5 and C6). – The
temporary classification of the new message is CtmpA - Local confidential.

∃x ∈ Cx |x ∈ {C5, C6, C7} −→ ctmp = CtmpA

3. All messages in the knowledge pool, which are classified as C7 - Community Protected
or its Sanitised classification C8, are originated in the same Trusting Community as
the Destination Community of the message. – The temporary classification of the new
message is CtmpC – Community Protected.

t = tx ∀ (t, c) ∈ (Cx, Tx) | t → c& c ∈ {C7, C8} −→ ctmp = CtmpC

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 161

4. There is at least one message classified as C7 Community Protected or its sanitised
classification C8 which is not originated in the destination community of the message.
– The temporary classification of the new message is CtmpA - Local confidential.

∃ (t, c) ∈ (Cx, Tx) | c ∈ {C7, C8} & t 6= tx −→ ctmp = CtmpA

5. All messages in Kx are classified public C10. – The temporary classification of the new
message is public CtmpD.

c = C10∀ c ∈ Cx −→ ctmp = CtmpD

After determining the major destination class, the final destination classification is calcu-
lated by applying the following rules in the given order:

1. The temporary classification is Local Confidential CtmpA. There is at least one source
message with classification C0 - Local Confidential. – The destination classification is
C0 - Local Confidential.

∃ c ∈ Cx | c = C0& ctmp = CtmpA −→ cx = C0

2. The temporary classification is Local Confidential CtmpA. There is at least one source
message with classification C1 - Local Confidential but Sanitised for Third Party or C4
- Destination Confidential. – The destination classification is C1 - Local Confidential
but Sanitised for Third Party.

∃ c ∈ Cx | c ∈ {C1, C4} & ctmp = CtmpA −→ cx = C1

3. The temporary classification is Local Confidential CtmpA. There is at least one source
message with classification C2 - Local Confidential but Sanitised for Community or
with classification C5 - Destination Confidential but Sanitised for Community or with
classification C7 - Community Boundary protected. – The destination classification is
C2 - Local Confidential but Sanitised for Community.

∃ c ∈ Cx | c ∈ {C2, C5, C7} & ctmp = CtmpA −→ cx = C2

4. The temporary classification is Local Confidential CtmpA. – The destination classifica-
tion is C3 - Local Confidential but Sanitised to everybody.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 162

ctmp = CtmpA −→ cx = C3

5. The temporary classification is Destination Confidential CtmpB. There is at least one
source message with classification C4 - Destination Confidential. – The destination
classification is C4 - Destination Confidential.

∃ c ∈ Cx | c = C4& ctmp = CtmpB −→ cx = C4

6. The temporary classification is Local Confidential CtmpB. There is at least one source
message with classification C5 - Destination Confidential but Sanitised for Commu-
nity or C7 - Community Boundary Protected. – The destination classification is C5 -
Destination Confidential but Sanitised for Community.

∃ c ∈ Cx | c ∈ {C5, C7} & ctmp = CtmpB −→ cx = C5

7. The temporary classification is Destination Confidential CtmpB. – The destination
classification is C6 - Destination Confidential but Sanitised to everybody.

ctmp = CtmpB −→ cx = C6

8. The temporary classification is Community Protected CtmpC. There is at least one
source message with classification C7 - Community Boundary Protected. – The desti-
nation classification is C7 - Community Boundary Protected.

∃ c ∈ Cx | c = C7& ctmp = CtmpC −→ cx = C7

9. The temporary classification is Community Protected CtmpC. – The destination clas-
sification is C8 - Community Boundary Protected but Sanitised to everybody.

ctmp = CtmpC −→ cx = C8

10. The temporary classification is Public CtmpD. – The destination classification is C10 -
Public.

ctmp = CtmpD −→ cx = C10

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 163

Destination confidential messages are not created during this process; however, this clas-
sification may be assigned whenever a reply is send to any node in reaction to a knowledge
enquiry. Another occasion is considered with the existence of some piece of information,
which is only related to a certain node and it’s essential to inform this node; however, this
node shall not be enabled to pass further this information nor any message derived from it,
not even within the community. The classification ”Destination Confidential” provides an
opportunity to the application to publish information exactly this way.

6.3. Technical design and implementation

6.3.1. IOIDS as a service - Integration with G4DS

This section discusses in detail all measures for and the interaction of the Inter-Organisation
Intrusion Detection System with the subjacent Grid system (G4DS) from the view of the
IOIDS. The integration of applications from the view of the grid system itself has been
discussed in very detail in section 5.3.6.

In the grid explanations, it has already been worked out that for each application or so-
called G4DS service a XML formatted service description has to be provided. A copy of the
service description for the IOIDS service is provided on the resources CD.

Any service, which intends to make use of the facilities provided by G4DS needs to authen-
ticate and register in the first place. This process is explained in the first of the following
three sections. The only way for a grid service to interact with G4DS is the sending and
receiving of messages through it. All required meta data (community, distribution domain,
such as single member or a group of members, or other protective delivery options, such as
sanitising invocation) is transmitted during these processes. The passing and retrieving of
information is discussed in detail in the following section. Afterwards, attention is drawn
to the determination, transmission and extraction of the classifying attributes for messages,
namely the classification itself and the trusting community, its belongs to.

Register service and establish connection

In the introduction for service integration within the G4DS chapter (section 5.3.6) the pro-
cedure of integrating a service with the grid platform has been discussed already. From the
view of the connected service, the IOIDS service in our case, the following steps have to be
applied (assuming, the grid infrastructure with a working community and members, which
know each other, is in place already):

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 164

Service description (KSDL) – As part of each G4DS service, a service description (XML)
must be developed. The service description for IOIDS is provided on the resources CD.
This one has to be made available to the G4DS system using its maintenance interface
(section 5.3.3).

Access control extensions – Furthermore, any G4DS service may make use of the access
control facilities, provided by G4DS (G4DS access control in sections 5.2.4 and 5.3.4).
For these reasons, new G4DS access control policy files have to be developed and made
available to G4DS by placing them at a certain location within the local file system
and registering them using G4DS configuration files.

Service Key – Whenever a grid service intends to make use of G4DS facilities, it has to
authenticate at the G4DS system with the private key of an asymmetric key pair at
connection time. (section 5.3.6). This key must be created within the G4DS mainte-
nance environment and can be exported from there. The G4DS service client module
provides an API for connecting against G4DS using this private key.

Connect – Ones, the private key has been exported, it will be passed on to the G4DS
platform with a rendezvous request. This methodology is implemented by the G4DS
service client module and finally only requires the service id of the connecting service
and the private key. (a generic example is provided in listing 5.9 in section 5.3.6)

Passing and retrieving information

Most information for the IOIDS system is encapsulated inside the IOIDS message. Some
information, however, is essential for delivering the message to the distribution domain.
Consequently, along the actual messages passed to the grid system, some meta data has
to be passed on as well, which is made up by the following items:

• The distribution domain of the message, which might either be a single member (spec-
ified by the member id), or a group of members (specified by community id or service
id).

• The community, this message is valid for and shall be delivered in

• The actionstring of the IOIDS system, indicating which action shall be performed on
the receiver’s side.

The definition of community is optional; in fact, if no community is specified, G4DS at-
tempts to determine the best suitable community for the given combination of sender, re-
ceiver(s) and service.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 165

The action string has to be passed on to G4DS in order to allow incorporation of G4DS
access control for IOIDS purposes. In fact, by providing policy files for the G4DS access
control system, connected applications can make use of it, and this way, messages may be
filtered even before they are passed on to the application. Finally, it is left to the application
to check, whether the given action string really suits the data transmitted with the message.
(see also section 6.3.3 for more details)

6.3.2. Dataengine - process information and react appropriately

The IOIDS data engine has been identified as an substantial module within the IOIDS ar-
chitecture in the design introduction in section 6.2.1 already. In fact, whenever any data is
to be shifted within IOIDS the data engine is involved; no matter at which location the data
is originated and no matter which nature the data is of.

In order to support the demand of a highly configurable approach, the IOIDS data engine
has been based on a policy driven approach. This way, it is directly connected to a policy
repository, which accesses backend information in XML format from the file system. More
information about policies and their processing is provided in the following sub section.

Based on the policies, the data engine may initiate any (or a combination) of the following
actions with the new information:

• Create a new event for the locate data repository

• Distribute the information throughout the IOIDS network

• Request more information regarding certain attributes

Each of these items may occur several items within the chain of actions; so that, for
example, two different events may be generated for distribution into two different distribution
domains such as communties.

The latter two items of the list draw the attention back to the already discussed separation
of message types; namely the knowledge requests and information updates (section 6.2.4 in
message formats). This clear separation has to be aligned to since this is the way to make
the difference between read and write access to the IOIDS network.

Besides the issues, which may be covered with the policy repository the data engine is in
charge to handle two problems, arising for the IOIDS:

• The overall IOIDS network is thought to be made up by a number of different trusting
communities, which will, by any chance, exchange information between each other. In
certain constellations of communities with their gateways between each other, there

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 166

might occur circles, messages could travel through. The data engine must make sure
that a message, which has been processed ones already, is not processed another time.

• The SoapSy database with its separation in Core and Extensibles has been discussed
in section 6.2.3. The integration of data from the core is rather straight forward due
to its static nature. The extensibles, in contrast, are rather dynamic, which requires a
modular approach within IOIDS to support the processing of their data.

Each of them is discussed briefly in a dedicated sub section further down in this document.

Policy approach

The Inter-Organisation Intrusion Detection System approach is supposed to be highly con-
figurable to allow implementation in very different employment scenarios. As visualised in
Figure 6.1 in the introduction of this chapter, the data engine is connected to a policy repos-
itory, which maintains its data on the local file system.

In general, the policy files are XML encoded instructions on the local file system, which
define exactly, how the data engine has to react in response to certain events. The following
types of information is present in the policy descriptions:

• Input information, describing the situation / event a certain action shall be triggered.
The corresponding parameters are:

– Source of event (local or remote)

– Content of certain fields within the event (e.g. event source IP)

– Pattern, which may occur anywhere within the event description (fulltext search)

– Timeframes for the occurrence of the event

– Sub-System (Extension) of event (only for local event)

– Trusting Community, the event was delivered in (only for remote event)

– Origin (G4DS member id) of the event (only for remote event)

– Classification of event (only for remote event)

• Reaction information, indicating, which action shall be carried out. As briefly stated
before, the list of actions is made up by:

– Create a new event for the locate data repository (Required parameters: Classifi-
cation, Trusting Community)

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 167

– Distribute the information throughout the IOIDS network (Required parameters:
distribution domain (single user, certain community / communities, whole IOIDS
network))

– Request more information regarding certain attributes (Required parameters: en-
quiry domain (single user, certain community / communities, whole IOIDS net-
work), enquiry attributes (see section 6.2.4 for details))

Note that in order to carry out action 2, action number 1 has to be performed before. No
event is to be populated into the IOIDS network without existing inside the local IOIDS data
repository.

An extract of a sample IOIDS policy as shown in listing 6.5 makes the idea of policies more
understandable. It defines a policy rule, which passes any message from any of the local
subsystems to all members within the two communities C001 and C002. (A full copy of the
default IOIDS policy is provided on the resources CD.)

Listing 6.5: Structure of extract of IOIDS data engine policy¨ ¥
i o i d s−po l i c y

ru l e

id = 00033

s i t u a t i o n

o r i g i n = l o c a l

subsystem = ∗

r e a c t i o n s

r e a c t i on

∗ number=”1”

type = NewLocalEvent

parameters

c l a s s i f i c a t i o n = 7

community = C001

d i s t r i b u t e

domain = C001

∗ type=”community”

r e a c t i on

∗ number=”2”

type = NewLocalEvent

parameters

c l a s s i f i c a t i o n = 7

community = C002

d i s t r i b u t e

domain = C002

∗ type=”community”

r e a c t i on

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 168

∗ number=”5”

type = Terminate
§ ¦

A policy is made up by an ordered list of rules. As indicated, each rule within the policy
is equipped with a unique identifier. This is very important since the processing of rules is
carried out in the order given by these IDs.

Besides the identifier, each rule is coming with two further sections:

situation - Describing parameters, for which this rule is valid for.

reactions - Formulating the actions to be triggered in response to the certain situation.

The parameters in the situation environment do not need to be given in a certain order.
Supported keywords in there are:

origin Side of origin for the event. May only be local or remote.

subsystem Name of the SoapSy subsystem, which inserted the given event. (A comma
separated list allows the specification of several subsystems in here.)

timeframe Date and time, this event reaches the data engine. Specified for date and time
in form of tags starttime and endtime. (This is not necessarily equivalent with the
timestamp of an event since there might be latencies on the way, the event is passed
from the actual source of the event (SoapSy event observer) towards the IOIDS system.)

classification Specifies a certain classification for an event. (A range may be given by pro-
viding a list of comma separated values.) This may only be applied to remote (IOIDS)
events - new local events are not yet equipped with a classification; the assignment of
one is part of this process.

community The given event is valid for a certain community. (A list may be supplied by
separating values with commas.) As stated for the classification, this item may only be
used for remote events (origin remote).

sender The sender of an IOIDS event (defined by its G4DS member id). (A list may be
supplied using comma separated values.) Again only valid for remote events since local
events do not yet have an IOIDS sender.

event.source The source of the actual (SoapSy core) event. A variety of information may be
supplied here, such as IP address (net mask for address ranges), host name, protocols,
ports or operating systems.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 169

event.destination The destination of the actual (SoapSy core) event.

event.observer The observer of the actual (SoapSy core) event.

event.reporter The reporter of the actual (SoapSy core) event.

event.timestamp The timestamp of the actual (SoapSy core) event.

The structure for the four items event.source, event.destination, event.observer and event.reporter
are the same, following this guide:

• If supplied, either an IP address or a (fully qualified) hostname should be given.

• For IP addresses, a netmask may be supplied in order to cover a certain range of IP
addresses.

• For network intrusion detection events (as for example generated by snort) the knowl-
edge about the network protocols is of high interest. The protocol here may be defined
for layer 4 of the TCP/IP protocol stack (saying, most likely TCP or UDP).

• The port may be provided optionally. Depending of the nature of the information,
either the source or the destination port is considered.

• Information about operating systems may be supplied on a start-with basis; the IOIDS
data-engine performs a string pattern search and checks for matches between the oper-
ating system of the event and the string provided here.

The format of the data provided within the descriptions tags depends on the tag itself. A
classification, for example, is to be given as a simple string; an event.source, in contrast, is
made up by a structure integrating information about the IP address, DNS name, operating
system etc..

The reactions have to be defined for execution in a certain order, indicated by their reaction
number. This takes the very likely requirement into account, to carry one certain reaction
before or after another one. Reactions are categorised; the supported reaction types are:

NewLocalEvent – Generate a new event for the local SoapSy event repository. As stated
in Listing 6.5, distribution of this event may be defined as part of this rule with a
distribute parameter and more information defining the distribution domain. Further
parameters have to be provided for assigning an IOIDS classification and a community
for the new event. (By providing the value Auto for classification or community, the
policy process as described in section 6.2.5 is kicking in and attempts to determine the
requested values by processing information.)

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 170

Terminate – Abort processing of reactions with this rule.

Refer – Continue processing of reactions with rule with the number to be given as a param-
eter.

Each of them may or has to be equipped with a certain number of parameters. Refer to the
full example on the resources CD for getting detailed information about their handling. With
reaction refer the processing will be continued at the rule with the given number and come
back to this hierarchy after finishing the reaction rule tree. Reaction terminate, in contrast,
aborts the processing for the policy immediately.

Control flow of data

The network of G4DS nodes, and consequently of IOIDS nodes, is structured in communities.
Defined by the G4DS community descriptions, nodes may be member of several communities
at the same time and even pass on information from one to another. This behaviour has
been introduced with the concept of Trusting Community Gateways in section 5.3.5. The
definition of trusting community gateways, however, only provides information about the
permission of passing of messages; not in detail, which messages are to be passed on. This,
in fact, is left to the service running on top of G4DS. It has to provide information within
its distribution policies, which defines this behaviour. This leaves it finally to IOIDS to take
care of the issues of distribution, and this way, problems arising by distributing throughout
several communities, such as:

• Circles in information flow

• Bouncing of messages between two parties

Since IOIDS follows a peer-based approach, there is no central instance deciding about
the distribution of messages. Despite, the population of a single message depends on the
behaviour and configuration of several parties:

• The actual initiator of the message, which has to define a distribution domain and needs
to flag the message with a classification to provide guidance for further processing

• Certain gateways on the route towards the final destinations must decide, whether they
should pass on a certain message, drop it or only process it locally

• The final destination itself, which decides whether the received information is to be
processed or dropped

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 171

Each of the involved parties bases its decisions on their policies (see previous subsection
6.3.2). Due to the dependence for the population of information on so many parameters, a
sufficient way has to be put into place in order to avoid messages bouncing within the G4DS
/ IOIDS network. The solution for overcoming this problem has been the introduction of
message identifiers.

Message Identifiers In order to avoid multiple processing of the same information, each
event has to be equipped with a local message identifier (mid). This mid is directly stored
together with the event information in the SoapSy IOIDS extension relation named IOIDS-
EVENT. Furthermore, a list of ids for messages is maintained, where the messages have not
been processed by the local node (due to policy decisions). This prevents the re-processing
of messages against IOIDS policies.

Whenever a new event is created on the local node, a new message id has to be produced
and stored together with the event. This is then passed with the IOIDS event in order to
allow receivers to check for previous occasions of the message. Message IDs have the following
attributes:

• They are unique throughout the entire IOIDS network. This is achieved by combin-
ing information from three different sources for the message id, namely the member
identifier, a timestamp and a random part.

• Each version of an event has a different identifier; meaning, two identical messages for
different communities possess different ids as well as the sanitised version of a message
is equipped with a different id than its original message.

Integrate data from third party event generators

IOIDS is intended to be used as a knowledge exchange mechanism on a high level of commu-
nication between several parties integrating a variety event logging applications, such as:

• (Distributed) Intrusion Detection Systems such as Snort, SnortNet, Prelude or any
other Intrusion Detection system product

• System event loggers such as syslog or Windows Event Log

• Any other application contributing information in the structure of the SoapSy event
core

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 172

It has been stated in section 6.2.3 already, that integration of event loggers is performed
using the approach of a central data repository called SoapSy. However, the integration of
third-party information for IOIDS is a two step process:

1. The third party event generator must be able to contribute data to the SoapSy database
and provide the information in the required format

2. IOIDS must be able to pick up this information and distribute it to the IOIDS network

Step number one is actually beyond the scope of the IOIDS architecture itself; however,
for experiment and analysis purposes some efforts have been put on the development of such
event data converters. Some outcome is presented in form of Snort converting tools within
the analysis chapter in section 7.3.3.

Step number two, however, is directly part of the requirements to be addressed by the
IOIDS system (section 3.3.4). The way, IOIDS is dealing with this requirement is the util-
isation of modules, one for each extension, and the employment of an ExtensionHandler,
which acts as kind of a dispatcher for retrieving and inserting extension information for any
extension. There are only four use cases the extension modules are required for, which are
explained in detail.

Use Case I - Insert a new Event into SoapSy – Whenever a situation requests the storing
of an event into the SoapSy data repository (triggered by the dataengine - section
6.3.2), there might be extension data attached to the event, which is desirable to be
stored together with the plain event information. (Section 6.2.4 explains in detail, how
several events with extension information may be attached to a single IOIDS event.)
With the separation of core and extensible within SoapSy (and consequently the way
IOIDS is accessing it), IOIDS is always able to store the core event information of the
events; for the extension information, however, it passes on the request to the extension
handler, which attempts to load the corresponding extension and passes on the request
thereupon.

Use Case II - Retrieve event information from SoapSy – The retrieving of information pic-
tures the same problem: whenever a related event shall be loaded from SoapSy, IOIDS
itself may only request the core event information. The extension specific information
however, cannot be retrieved - simply due to the lack of knowledge about the database
layout of its relations.

Use Case III - Send a new G4DS message containing extension data – Besides the SoapSy
database the data engine is also connected to the grid system G4DS. All messages con-

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 173

taining extension information must be formatted appropriately as well. The XML
encoding of the extension bits for the events has to be performed by some kind of
module, which knows about the layout of the corresponding extension.

Use Case IV - Receive a new G4DS message containing extension information – The re-
verse direction for the G4DS messages, namely the processing of extension data in XML
format and transformation into the IOIDS internal dictionary based data structure can
only be performed by a subsystem, which knows about the structure, too.

Consequently, for each extension there has to be a module maintained for IOIDS, knowing
about the database structure of the relations for the SoapSy extension of the corresponding
extension. Whenever there is a request from IOIDS, it is in charge to transform data from
the SoapSy XML interface layout into the internal IOIDS dictionary layout (section 6.3.4)
and vice verse. So far, the following modules are maintained for IOIDS:

SnortDB – Module, which processes knowledge as provided by the SnortDB tool, explained
in section 7.3.3

IOIDS – For the reason that one major IOIDS event may refer to other IOIDS event, the
actual SoapSy IOIDS extention information of the linked event should be processed
too. Therefore, an IOIDS extension module had to be introduced.

The list of extensions is configurable. Ones, a new module for a new SoapSy extension has
been completed, it may be registered for IOIDS use within the IOIDS configuration module
(config.py) and will be picked up by the extension handler immediately after restart.

The implementation of a module for each extension to be supported requires quite a lot of
efforts and it is essential, that these modules are kept up to date - meaning, whenever there
is a change in any of the SoapSy extensions, the IOIDS extension module has to be updated
at the same time; otherwise, only core event information will be carried for this event type.
A dynamic approach, which is capable of processing the information automatically is highly
desirable. In the section for possible future extensions (section 8.3) an idea is mentioned,
which parses SoapSy database description information and configures itself dynamically for
all available SoapSy extensions.

6.3.3. Access Control

In the design section for IOIDS the theoretical approach for protecting information within
IOIDS has been introduced and explained broadly (section 6.2.5). This section, in addition,
will explain, how the aforementioned measures are carried out in practise.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 174

As employed for the access control mechanisms for G4DS (section 5.2.4 and 5.3.4 for the
implementation), the access control for IOIDS is making use of the following objects:

• Actors

• Targets

• Operations

Practically, an actor is performing a certain operation on a certain target. The target
within IOIDS is always the destination node itself (saying, the receiver of the message);
hence, it is not so much of interest due to the lack of changing. The actor is considered to
be the original sender of a message (meaning, if a message has been routed through G4DS,
it is the original member rather then the last gateway on the route). The member (actor) is
expressed by the use of its G4DS member id. The operation is expressed in form of an action
string again, for now the following actions are supported:

ioids.write.newevent – The new incoming message for the IOIDS service is an IOIDS knowl-
edge update and attempts to insert at least one new event into the IOIDS knowledge
repository.

ioids.read.requestinfo – The new incoming message for the IOIDS service is an IOIDS knowl-
edge request and, this way, requests more information about events stored in the local
IOIDS knowledge repository.

The data engine is in charge to apply the correct action string for a certain message to be
sent through G4DS. The action string for IOIDS is additionally passed on to the G4DS system
together with the actual message, which allows integration of IOIDS access control with the
G4DS access control mechanisms for a prefiltering before incoming messages are actually
passed on to the IOIDS system (see following section). Further examination of actions and
reactions is carried out by the data engine itself using the supplied policy repository (see
section 6.3.2 for details).

Integration with G4DS access control mechanism

For the subjacent grid topology G4DS a rule-chain based access control mechanism is intro-
duced in section 5.3.4. Any connected application may make use of these facilities by passing
on action strings together with the actual message. This way, messages may be filtered by
the G4DS access control mechanisms before they are actually passed on to the IOIDS system.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 175

Additional G4DS access control policies (section 5.2.4) have to be provided and integrated
in order to facilitate the process.

Ones, the required access control policies have been provided for G4DS, the whole process
of access control for IOIDS is performed using the following steps:

1. The data engine in IOIDS becomes aware of the need of populating a new message into
the G4DS network. Regarding its location of processing it determines the appropriate
action string for the message request to be carried out. The new message is passed on
together with the action string and the distribution domain to the G4DS Connector.

2. The G4DS Connector passes the message on to the connected G4DS system including
the meta data about distribution domain and action string.

3. The grid system assembles a new G4DS message, which contains the actual (IOIDS)
message as payload, the service id for the IOIDS service and the action string - both
the latter in the G4DS message meta data. This message is distributed to the members
as indicated by the distribution domain received from the IOIDS G4DS Connector.

4. On the receiver’s side, the G4DS message is parsed and the payload and the meta
data information is extracted. After determining the destination service, the meta data
information is handed over to the G4DS access control for checking against the rules
given in the access control policy files.

5. In case of a positive reply from the access control, the application, which has connected
against G4DS under the given G4DS service id, is contacted and the incoming message
is passed including meta data information such as action string, community and sender
of the message.

6. The IOIDS G4DS Connector receives the message and passes it on to the IOIDS data
engine as an incoming remote message including the meta data information.

7. The IOIDS data engine thereupon parses the payload and performs checks on the
available information, whether the action string suits the given payload data. In case
of a successful outcome of this check, the given event is processed against the IOIDS
policy rules (6.3.2) and defined actions will be carried out by the data engine.

For a complete copy of the IOIDS rules for the G4DS access control mechanism check the
resources on the CD.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 176

6.3.4. Internal Datastructure

IOIDS is dealing with plenty of structured data, such as information about events with their
related information about involved parties, payload data and the like as well as information
from several extensions for events. A way has been to be found, which supports the internal
handling of data and makes converting into the required (mostly XML encoded) data formats
easy.

The approach employed for IOIDS is based on a mixture of datatypes dictionaries and lists
and supports greatly the maintenance of relations between several structures. Furthermore,
the wrapping from and into the XML based formats may almost be done in a generic way. The
following (simplified) example (given in listing 6.6) for an event with some related information
explains the structure in some more detail:

Listing 6.6: Example for data structure within IOIDS¨ ¥
[’ event ’ ,

{(’ timestmp ’ , ’ 2005−12−12 10 : 5 3 : 3 9 .46339 ’) , (’ e v en t id ’ , ’ 23 ’) } ,

[[’ event type ’ ,

{(’ e v en t type i d ’ , ’ 2 ’) , (’ event type name ’ , ’ i o i d s ’) } ,

[]

] ,

[’ source ’ ,

{(’ src name ’ , ’Unknown Source ’) } ,

[# . . . agent and other r e l a t i o n s here . . .#]

]

]

]
§ ¦

In the example given in listing 6.6, lists are indicated using square brackets, dictionaries in
contrast are indicated using cambered brackets; each item inside a dictionary as a couple in
round brackets as (key, value).

In fact, each structure is made up by an ordered list of exactly three items, which represent
the following information:

1. The name of the structure (in String representation)

2. The attribute of the structure (in dictionary representation)

3. All related structures for this structure (in form of an unordered list)

The dictionary of attributes for a structure (the second item within the structure list) holds
all attributes for it, the key is taken by the name of the attribute, the dictionary value by
the attribute value respectively.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 177

The items in the relation list (this list is the third item within the major structure list)
holds a list of structures itself; hence, each item of this list is exactly of the same layout as
the one just explained.

The content

The content of the structures is supposed to hold computer incident event information. As
stated in section 6.2.3, research in this area has been extensively undertaken, and with SoapSy
an approach has been proposed, which integrates event information from a variety of event
generating applications. Since IOIDS is supposed to exchange exactly this kind of knowledge,
it could take advantage of the thereby achieved results and, consequently, the IOIDS internal
data structure more or less mirrors a lists / dictionaries representation of the SoapSy database
design.

The changes, IOIDS employed towards the original data layout are covered with the fol-
lowing list:

• IOIDS totally ignores the abstract part of the SoapSy database

• Some indexes have been taken off due to problems of their employment in practise (see
top of copy on the resources CD (history) for all details)

• The relation process has been referenced from relation agent instead of relation com-
puter; this enables the event processor to distinguish between two different processes on
exactly the same machine at the same time (for example, one acting as the destination
(Apache) and another one as observer (syslog))

The relations for the IOIDS extension for SoapSy have been discussed in section 6.2.3. The
internal data structure of them is an exact copy, just in lists / dictionaries representation.
The actual event within the SoapSy core is referenced thereby from within the IOIDS-event
structure. Consequently, the complete IOIDS event is represented the following way inside
IOIDS (see listing 6.7):

Listing 6.7: Internal representation of IOIDS events¨ ¥
[’ i o i d s e v e n t ’ ,

{(’ timestamp ’ , ’VALUE’) , (’ i o i d s e v e n t i d ’ , ’VALUE’) , (’ community id ’ , VALUE) } ,

[[’ event ’ ,

{ #. . . a l l event a t t r i b u t e s . . .# } ,

[# . . . a l l event r e l a t i o n s . . .#]

] ,

[’ i o i d s s o u r c e ’ ,

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 178

{(’ i o i d s p e e r i d ’ ,VALUE) } ,

[[’ i o i d s p e e r ’ ,

{(’ i o i d s p e e r i d ’ , VALUE) , (’ peer memberid ’ , VALUE) } ,

[]

]

]

]

[’ i o i d s s e n d e r ’ ,

{(’ i o i d s s e n d e r i d ’ ,VALUE) } ,

[[’ i o i d s p e e r ’ ,

{(’ i o i d s p e e r i d ’ , VALUE) , (’ peer memberid ’ , VALUE) } ,

[]

]

]

]

[’ i o i d s c l a s s i f i c a t i o n ’ ,

{(’ c l a s s i f i c a t i o n i d ’ , VALUE) , (’ c l a s s i f i c a t i o n c o d e ’ ,VALUE) , (’

c l a s s i f i c a t i o n n ame ’ , VALUE) } ,

[]

]

]

]
§ ¦

The relations between IOIDS events and other SoapSy core events are mapped using the
same structure. The copy on the resources CD shows the complete data structure of the
IOIDS extension in XML representation.

Cooperation with database access

One major issue for the decision about the internal data structure was the ability to transform
it into the various XML formats. In fact, two different XML formats must be created and
parsed from or into the aforementioned structure, namely:

• The XML format for IOIDS messages (see section 6.2.4)

• The XML format used by the XML database

Considering the internal datastructure described in the example in listing 6.6, the corre-
sponding XML output for the former one (the IOIDS message) looks as shown in Listing
6.8.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 179

Listing 6.8: Transformation to IOIDS XML from internal data structure¨ ¥
<?xml version=” 1 .0 ” encoding=”UTF−8” ?>

<event timestmp=”2005−12−12 10 : 5 3 : 3 9 .46339 ” even t i d=”23”>

<event type even t type i d=”2” event type name=” i o i d s ”>

<source src name=”Unknown Source ”>

< !−− agent and other r e l a t i o n s here −−>

</ source>

</ event>
§ ¦

It becomes very obvious when comparing the two listings that the transformation from
one into the other may be performed very easily, meaning, even with a generic wrapper or
parser. This is exactly what IOIDS is doing; however, in order to allow control over the
data, methods for certain structures / relations may be defined, which are triggered on their
occurrence. These can support certain post or pre-processing activities, such as the conversion
for special datatypes or the like.

Finally, the employed data model is absolutely generic; hence, it can be transformed into
any required output format. Furthermore, data can be accessed very easily by just browsing
through the structure tree using indexes or keys for the dictionaries.

XML / DOM Tree processing and creation

For clear separation of responsibilities, an additional step has been put into place for trans-
formations from the internal datastructure into the XML based dialects and vice-verse. Tech-
nologies for XML have been discussed and compared in section 2.6.1 of the state of the art
discussion. The Data Object Model (DOM) has been chosen for its simplicity and power.
This way, IOIDS is never creating any XML code, instead it assembles a DOM tree, which is
passed to an XML writer to create the final outcome. This way, IOIDS prevents itself from
dealing with any problems occurring within the XML syntax and grammar.

The other way around, IOIDS neither parses any XML document directly, instead it passes
the XML encoded string to an XML parser provided by libraries and afterwards processes
the information by travelling through the Dom tree.

6.3.5. IOIDS logging facilities

As employed for the G4DS system (section 5.3.8), IOIDS has also been equipped with a
logging mechanism. This addresses the execution environment of IOIDS, which is supposed
to be in service manner rather than in interactive mode.

IOIDS logging supports the following output targets:

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 180

• An IOIDS unique log file in the local file system (in IOIDS syntax)

• The Linux / Unix common syslog facilities (Lonvick (2001))

The logging into the local file is performed in an IOIDS specific text-based format, which
is, however, derived from the well-known syslog output format. Consequently, each entry is
made up by a single line in the file containing a date-time stamp and the log message. An
additional action id is included with the entry, which allows easy filtering of messages without
processing the actual message string of the log event.

In order to enable IOIDS to log into the system syslog facilities, the local machine has to
be prepared for receiving log messages from applications. Afterwards, IOIDS may be set up
to make use of these facilities; each log message will be equipped with the identifier IOIDS.

Settings for the IOIDS logging mechanism may be applied in the central IOIDS configura-
tion module. Besides the file name of the local IOIDS log file and the indication about the
use of syslog facilities, the syslog identifier may be aligned in there.

Logging levels and further settings

IOIDS logging facilities have been encapsulated in a module called ioidslogging. A well-defined
interface is provided in there for generating new log messages from within IOIDS. In order to
allow the user of IOIDS to receive log messages of different detail six logging levels have been
introduced. Since each logging message, which is passed on to the IOIDS logging, must be
equipped with a log identifier, each of these levels is a set of identifiers, whose corresponding
messages are logged in the given level. Thereby, a log level n always includes the log ids of
logging level n− 1 as well.

For IOIDS the following logging levels are defined:

Level 0 – Critical errors and log system start-up as well as shutdown

Level 1 – Data engine access violations

Level 2 – Incoming and outgoing messages

Level 3 – Message details

Level 4 – SoapSy database activity

Level 5 – All logging events

The access to the logging facilities from within IOIDS is performed with an equivalent
interface to the one of G4DS and an example is provided in listing 5.12 in section 5.3.8.

Chapter 6. Inter-Organisational Intrusion Detection System (IOIDS) 181

6.4. Conclusion

With IOIDS an approach has been introduced, which enables several organisations to ex-
change security incident information between each other whilst maintaining the level of trust
desired by each of them. The overview of the architecture shows the several components of
IOIDS, which are finally hold together by the data engine, in charge for making decisions
based on the user defined policies. Thereby, information is processed and populated from
and to both, the local data repository SoapSy and remote nodes, connected via G4DS.

Consequently, the major benefits of Inter-Organisation Intrusion Detection, as proposed
here, are:

• Computer Incident knowledge may be exchanged in a well-formated, transparent man-
ner.

• The user of IOIDS decides themself, how much they want to trust any other party.

• Employment of access control ensures proper protection of information.

• Utilisation of G4DS as subjacent communication platform ensures a secure, reliable and
trustworthy communication.

• Integration of XML-formatted policies allows any user customisation to their needs.

• SoapSy as the central data repository for the local node facilitates the integration of
a wide range of event generating applications such as different Intrusion Detection
Systems.

It is strongly believed that IOIDS provides a significant improvement for the security
of currently employed IT infrastructures. The definition of experiments (chapter 4) lays
down the measures for evaluating this statement. In chapter 7 corresponding experiments
are documented and a critical analysis of the results supports the expressiveness of this
hypothesis.

Chapter 7.

Experiment and Analysis

7.1. Introduction

The general idea of Inter-Organisational Intrusion Detection has been discussed in chapter 3
in great detail. Chapter 4 gave an overview about the design and architecture and defined
the way, how to analyse and evaluate them. In the chapters for G4DS (5) and IOIDS (6)
more design details and implementation issues have been discussed for the approach. The
only thing left for this chapter is the discussion of the results and their evaluation.

The hypothesis has clearly stated that intrusion detection audit data can be exchanged
across organisational boundaries in a secure and no-reputable manner. In this chapter the
proof of this statement is performed and capabilities of the IOIDS approach are mirrored
against the predefined required feature set from the experiment definition and furthermore
compared against capabilities of similar or related approaches within the DIDS context.

The analysis is divided into two parts, namely a feature comparison based on evaluation
of available documentation and a practical experiment in a laboratory environment. Firstly,
the feature comparison is covered with its section; all representatives are mirrored against
the predefined feature set and a final overview integrates all available results into tables to
allow comparison between approaches. Afterwards, the execution of the practical experiment
is discussed in its three stages. Each of them is bringing up its own partial conclusions. In
the end an overall conclusion integrates all results from the entire chapter and analyses all
available information.

7.2. Comparison of features

As indicated in the experiment definition in section 4.3, this part of the analysis is dealing
with a set of approaches in the context of distributed intrusion detection and grids systems
and is comparing those ones using a list of pre-defined low-level objectives.

182

Chapter 7. Experiment and Analysis 183

Over the following pages, each representative is dealt with within its separate section, and a
small explanation is given for its achievements and short-comings in each attribute category.
These is also a list provided for each of them, where the required information was gained
from.

In the end of this feature comparison an overview is provided in section 7.2.2, which presents
the gained results in matrix form in order to allow easy comparison and drawing conclusions.

7.2.1. Results per representative

Each representative has been introduced in detail in the representative list within the exper-
iment definition (section 4.3.1). In here, only a small introduction with a list of sources is
given before the actual feature evaluation is carried out within the given categories.

Inter-Organisational Intrusion Detection System (IOIDS)

Inter-Organisational Intrusion Detection System has been described in much detail within
this document. The outcome of this feature comparison is not necessarily restricted to the
feature set of IOIDS only. First of all, it is working in correlation with G4DS (as described
within this thesis) only. Furthermore, it has been designed and developed with the idea in
mind to integrate with an overall solution – consequently, whereever appropriate, features of
the overall approach, which IOIDS contributes to, will be included.

Intrusion Detection IOIDS is not coming with a sensor itself. Consequently, all require-
ments defined for the capturing process have to be addressed by the third-party event gen-
erators, logging into the system. As IOIDS is an abstract and integratable approach, any
kind of application may be used here - and due to extension cababilities, all their information
could be processed and populated.

Correlation for events is down to the employed data engine. For now, only simple inte-
gration of information from very different sources and their intelligent persistence preventing
any data loss is implemented. However, much research is going on within the group dealing
with analysis and correlation of event information and IOIDS would benefit from it directly,
as the outcome of those analysis process would go directly back into the database, where it
will be picked up by the IOIDS system.

Reporting and response facilities are pretty much down to the analysis equipment connected
to the central SoapSy database (which IOIDS is working on as well). Again, IOIDS is not
a project, dealing with graphical representation of IOIDS event data and user interaction;

Chapter 7. Experiment and Analysis 184

but lots of research within this area is carried out within the research group and IOIDS will
benefit from their outcomes directly.

Distribution The distribution process for IOIDS is carried out in a very structured way and
allows many configuration options using XML encoded policy files. Consequently, IOIDS
stands there as a very scalable and dynamic approach, which is able to map any consider-
able network infrastructure. This scales from small (fully peer-based) deployment scenarios
between a small number of organisations, through hierarchical constellations for a large com-
munity up to user-driven communities for private end-users all over the Internet.

The major drawback of IOIDS is the big delays it causes when distributing event in-
formation. Consequently, it cannot satisfy the requirement of carrying out the sharing of
information in realtime. A list of possible reasons have been named in sections 7.3.2 and
7.3.4. An implementation of an IOIDS topology should however take results from this proof-
of-concept implementation and research those problems in more detail in order to speed up
the overall process of information sharing.

Security and availability Security has been a major issue throughout the entire process
of designing and implementing IOIDS and G4DS. By employing a private-key-infrastructure
(PKI) within the communication platform G4DS it can cover loads of the requirements within
this category such as authentication, encryption and integrity of information. By further
deployment of a policy based access control mechanism within G4DS and its tight integration
with IOIDS, authorisation issues could be addressed as well.

Total avoidance of single points of failure has been a major issue for IOIDS and has been
pushed in a way that the overall system is completely decentralised and all responsibility
for the local node is strictly kept on its side. Credential mapping and single sign-on are
not addressed as one can see for up-to-date GRID architectures. However, the attitude is
different for a knowledge-grid based system as there is no need to initiate processes on behalf
of a certain credential set. Instead, the concept of trusting community gateways makes sure,
that information is only passed on between authorised domains.

A major advantage of IOIDS is its modularity in terms of integration of different commu-
nication protocols and encryption algorithms. An easy to extend plug-in mechanism with
corresponding configuration facilities supports very well these issues.

Last but not least it is capable to resist against DOS attacks in a way to continue work
of the overall system if certain components are down, thanks to the peer-based approach.
Internal attacks can be ward off by the help of the public key infrastructure and signature
validation of every incoming message within G4DS.

Chapter 7. Experiment and Analysis 185

Extensibility and collaborative options Due to its component-based approach with inte-
gration modules for third-party event generators, IOIDS is downright prepared to interact
with and process event information from other Intrusion Detection Systems. All inter-node
communication use well-defined standard protocols. It has been developed in Python, which
is a cross-platform scripting language. Due to its utilisation of a SoapSy database as central
data repository it is well prepared to integrate with other security measures in place as well
as a management console based on this platform.

Snort / SnortNet

Snort has been recognised as the de-facto standard for network intrusion detection. As it was
noticed, that the SnortNet projects is not much more than an output plug-in for snort and has
not gone much beyond a concept and initial implementation efforts, Snort and SnortNet are
covered as one approach from here onwards. Documentation has majorly been taken from
the Snort website (Snort (2006)) and the only available SnortNet documentation (Fyodor
(2000)).

Intrusion Detection Snort is purely a network intrusion detection system and, consequently,
limits its detection capabilities to corresponding attack patterns. Advanced features such as
stateful inspection can be provided by it. Correlation of event information is performed by
the SnortNet component by merging information from different locations together. Reporting
facilities are available in form of a web-based frontend called ACID (Analysis Console for
Intrusion Databases) (Danyliw (2006)). Although the snort IDS has been reused as capturing
application for a number of different projects it does not come with facilities itself to integrate
data from other event data generators. Intrusion response and countermeasure activities
cannot be carried out using Snort or SnortNet.

Distribution As SnortNet is distributing knowledge directly using a Snort output plug-in,
the sharing of information should be performed at least in near-realtime. Due to its fixed
structure of sensors, proxies and one management console its is neither very scalable nor very
dynamic in the sense of deployment scenarios. Consequently, the only network topology that
can be mapped is a hierarchical arrangement of components with one management console
at the very top. It is very unlikely that the combination of Snort and SnortNet provides
facilities for avoiding duplicate entries in the database as there are problems well-known for
the Snort IDS for creating errors alerting exactly this problem of duplicate primary keys.

Chapter 7. Experiment and Analysis 186

Security and availability Concerning security issues the combination of Snort and Snort-
Net is not up-to-date at all. A public key infrastructure and encryption facilities are missing
completely (although planned originally), which also ends up in a leek for integrity issues.
Authentication and authorisation have been implemented in a very week manner using ac-
cess lists for source IP addresses on the management console. The missing of a public-key-
infrastructure makes the issues of single sign-on and credential mapping obsolete.

As there is a hierarchical arrangement of components employed, one can conclude that
the top of the hierarchy, the management console, represents a single point of failure and,
consequently, the overall system cannot be DOS resistant in the manner it has been discussed
for this project. The checking of source IP addresses of incoming event information cannot
provide sufficient protection against internal attacks. The whole Snort application is running
as one monolithic application; however, integration of third party intelligence can be intro-
duced by output plugins as well as filters, the so-called Snort preprocessors. Last but not
least it is impossible to implement a network using this technology, where each node within
that layout maintains its own responsibility.

Extensibility and collaborative options Although, Snort is commonly known as the network
intrusion detection system, and, this way, integrated as capturing component in a number of
projects (even for the list given here), it does not integrate itself information from third party
event generators. The communication between SnortNet components is strictly employed
using standards such as the Intrusion Alert Protocol (IAP) and the Intrusion Detection
Message Exchange Format (IDMEF). The snort application itself comes as one monolithic
application; however a variety of output plugins and preprocessors contribute as modules
towards it.

The only way to configure Snort is a configuration file and command line parameters at
invocation time. This is not considered to be a straight-forward way to adopt for different
deployment scenarios. Although written in the programming language C, Snort is available
for a number of different UNIX based operating systems as well as for Windows. Due to its
vast number of output plugins, which enables it to log into very different output format and
output locations, it can be integrated easily with existent security measures. Snort does not
directly support integration with known central management consoles (besides its own one
named ACID); however, basic communication can be established by sending SNMP traps to
management consoles.

Chapter 7. Experiment and Analysis 187

Prelude

Prelude is a framework for intrusion detection systems rather than a single intrusion detection
system component. It provides components and libraries to establish communication and pass
on information and is able to integrate event information from third-party event generators
using those libraries. Information has mainly been taken from the on the internet available
Prelude Handbook (ThePreludeTeam (2006)) and the somehow outdated Prelude Architec-
ture Guide (Vandoorselaere et al. (2004)). Some experiences from the practical evaluation
have flown back into this overview as well.

Intrusion Detection As Prelude IDS has to be considered as a framework it can integrate
different types of intrusion detection systems (it even comes with NIDS and HIDS capturing
components itself) and is therefore able to cover different detection types as well as it is
able to theoretically detect a complete set of attack patterns. This includes attacks spanning
over several network patterns, so that they can only be recognised by IDS sensors employing
stateful inspection.

Correlation of event information is performed by targeting event information into a single
data repository, which may be analysed further at this side. Reporting is supported with the
Prelude specific analysis console named PreWikka, which comes as a web based front end.
As stated in the Prelude documentations, it is also coming with a countermeasure engine,
although very limited information is available, what actions can be carried out by it.

Distribution As shown in the experiment, Prelude IDS is well-prepared to distribute event
information in real-time. The managers can pass on information to sets of parent-managers,
so that a certain amount of scalability is in place; these measures, however, cannot satisfy
entirely the objective for deployment in very different and dynamic environments, as there
always has to be a top-level manager in the chain event information is travelling. This fact
also restricts the Prelude-IDS in its facilities for mapping onto different subjacent network
topologies. Last but not least, it could be proved in the experiments that there is no measures
in place to avoid duplicates effectively (the user of the program is in charge to not create any
circles in the information flow).

Security and availability The category for Prelude-IDS shows very different results for se-
curity and availability; as it is showing very good results in the view of security due to
its employment of certificates, asymmetric authentication and encryption technologies, but
lacking in the view of availability due to its centralised approach.

Chapter 7. Experiment and Analysis 188

As information cannot be exchanged in both directions between two links, it is impossible
to create a peer-based infrastructure with Prelude-IDS. This ends up in the presence of
single points of failure and, consequently, the whole approach is not completely decentralised.
Although, fail-over mechanisms are in place and events can be recovered at certain locations
within the network the presence of these single points of failure always provide potential for
DOS attacks. Internal attacks can be eliminated as far as possible due to the certificates used
for authentication.

Further issues arise for the objectives of single sign-on and credential mapping, as any
manager that wants to report to parent managers has to create a certificate for each of those
managers in question. There is no facilities present for authorisation; meaning as soon as a
sensor or child manager has authenticated, it may pass on any kind of message.

Protocols and encryption facilities are hard coded and cannot be adjusted easily to needs for
a certain deployment environment. It looks to be impossible to totally control the information
on the local node as the node always has to trust the information of ones authenticated
members without allowing further checks.

Extensibility and collaborative options As Prelude-IDS is coming as an IDS framework
and provides required libraries it is prepared to integrate alert information from third-party
event generators. It carries out its communication based on standards such as the Intrusion
Detection Message Exchange Format (IDMEF) and Transport Layer Security (TLS).

The core of Prelude-IDS (the Prelude-Manager) comes as a monolithic application and
does not spread its functionality over modules. Configuration facilities are in place in order
to adjust its behaviour to certain needs; however, the solely setup using configurations files
does not support quick changes in an easy manner. Prelude is only provided as source code
and it looks like being deployed under UNIX and Linux systems only, although I have not
attempted myself to install it on a Windows based operating system.

Locally available security measures can be integrated using the provided libraries only the
direction into Prelude. Prelude IDS comes with its own management console PreWikka and
is not alerting or reporting into any other management console.

AirCERT

AirCERT is supposed to act as an approach for exchanging high-level event data in an abstract
manner between organisations. This puts focus much more on normalisation and integration
of data than on low-level capturing processes. In the end, the sensor responsibilities are left
to third-party event generators such as the Snort IDS; components for extracting relevant
information are supplied.

Chapter 7. Experiment and Analysis 189

Information for evaluating AirCERT has mainly been taken from the handbook AirCERT
- The definite guide (Trammell et al. (2005)) as well as from the project website (Cert/CC
(2006)). Some experiences gained during the installation attempts for the practical experi-
ment execution have been used as well.

Intrusion Detection As mentioned, AirCERT benefits from capturing capabilities provided
by third-party event generators such as Snort IDS. Consequently, it is able to satisfy the
objectives concerning detection types, completeness of detectable attacks patterns and net-
work ids sensor features such as stateful inspection. As major focus is put on passing around
information between peers, correlation issues are addressed and corresponding results can be
taken further into analysis.

Simple reporting facilities are in place using the so-called Cheap AirCERT Visualisation
Environment (CAVE), which is, however, very limited in its functionality and cannot be
considered as a fully functional management console. AirCERT is not prepared to carry out
any intrusion response or countermeasure activities.

Distribution It cannot be made a statement with confidence about the real-time capabilities
of the AirCERT distribution process as experiments could not be carried out in the end and
results from previously executed experiments or benchmarks by other people are not available.
However, the components involved for processing, distributing, receiving and integrating
event information (such as a regular expressions processor, a Dav-enabled web-server and a
database de-normaliser) let conclude that AirCERT might struggle with this issue.

Concerning the infrastructure bit of the distribution process AirCERT shows its down-side
in its complexity and, therefore, cannot be considered as very scalable due to the missing
opportunity to deploy in smaller-scale environments. The same issues prevent the user from
deploying it to any possible subjacent network topology. Due to a high number of configura-
tion options, it is a rather dynamic approach. Duplicate items within the event information
are eliminated using a separate module called Dedup.

Security and availability From the security and availability point of view AirCERT benefits
from its certificate driven public key infrastructure and its peer-based attitude for information
sharing. Consequently, there are measures in place to satisfy the objectives for authentication,
encryption and integrity. The certificate approach with its implication that every peer has
to get a certificate signed from each other peer it want to communicate with does counteract
with the issues of single sign-on and credential mapping.

Chapter 7. Experiment and Analysis 190

Theoretically, AirCERT is a purely peer-based approach for exchanging event data. How-
ever, certain statements and publications give an insight to the final aim to gather all this
kind of information all over the internet and collect it automatically in a CERT database.
Although, this approach is implemented in a highly modular way there is no way to simply
integrate new encryption algorithms or communication protocols. The aforementioned dis-
tributed approach does not provide any surface for DOS attacks due to avoidance of single
points of failure as long as not implemented in a way that all event information ends up in a
central database.

The decision for the local node is strictly made by the owner of this node only; meaning
that only the local node decides about integration and distribution of information. Proper
authorisation facilities beyond the separation of information input by sender on the collector‘s
side are not in place. These facilities, however, should be able to support the resistance against
internal attacks.

Extensibility and collaborative options AirCERT is made to interact with other products
within the IDS context and is providing a number of normalisers and integrators to support
this job. It incorporates standards such as Secure Hyper Text Transfer Protocol (HTTPS),
Web-based Distributed Authoring and Versioning (WebDAV) and the semi-standard Simple
Network Management Protocol (SNML) (Center (2003)), which seems to have been created
as part of the project.

All its complexity is broken down into atomic components, which facilitates the issues of
availability and fail-over mechanisms. Many configurations can be applied to those modules,
although this cannot always be carried out in a straight-forward manner. The project’s
website reports tests with AirCERT on Unix and Linux machines only; claims, however, to
be executable on Windows operating systems as well.

Besides the integration of audit data from third party event generators it does not seem
to interact a lot with other applications, which might be available as part of the security
infrastructure already. On the collector‘s side there do not exist facilities to integrate with
potentially available third-party applications for integrated network and security manage-
ment.

Cooperating Security Managers (CSM)

Cooperating Security Managers is an approach in contrast to the already evaluated ones,
which does not provide a platform or framework for exchanging any type of event data; but
is rather an approach addressing a particular problem.

Chapter 7. Experiment and Analysis 191

Cooperative Security Managers is quite an aged approach already and is discontinued these
days. However, the only available source available for this approach is the paper “Cooperating
Security Managers: A Peer-Based Intrusion Detection System” (White et al. (1996)).

Intrusion Detection From the view of supported intrusion detection system features CSM
seems rather limited in its functionality and is falling behind for features like detection types
and completeness of detectable attack patterns. This is, however, a consequence of its attitude
to address the particular problem of user tracking throughout networks rather than providing
an abstract event information exchange framework. As CSM is not a network intrusion
detection system by nature it cannot be measured against the feature of stateful inspection.

Data correlation is a major benefit of this approach and actually builds up the base for its
functionality as suspicious behaviour is passed around between nodes and reactions are only
invoked ones a certain threshold has been reached over a set of nodes.

Reporting facilities are provided through a CSM specific GUI, which was not available for
further inspection to check its feature set. Response mechanisms to certain situations are
an essential part of the project and are provided using its dedicated module called intruder-
handling (IH). As CSM is really focused and narrowed down in its functionality it does not
provide options for integrating with any other IDS products.

Distribution It is not really stated in the paper, whether the distribution features are car-
ried out in realtime; however, it looks like that as soon as a certain threshold is met, the
distribution is initiated immediately. Although it is a peer-based approach it is not very
scalable in the end as every node has to exchange information with every other node in order
to track users. The same problems are there for the dynamics of the approach as it is only
working if all nodes are exchanging information between each other.

It is not clearly stated how the nodes are made talking to each other; but it does not
make the impression that this process is very likely to be mapped onto a variety of different
network topologies. The duplicates are not really an issue for CSM, as the decision making
process, based on thresholds, does need certain events to occur several times in order to
trigger reactions.

Security and availability In the time, CSM was brought up, distributed intrusion detection
system were not yet very popular and those early projects did not focus much on security
issues for the communication between their components. Consequently, CSM is missing au-
thentication or encryption mechanisms, nor is there anything like a public key infrastructure

Chapter 7. Experiment and Analysis 192

available. Certain criterion such as single-sign on or credential mapping become obsolete due
to this fact.

Without having keys in place, there is no way to ensure integrity for exchanged information.
Limited authorisation features seem to be covered by the module security manager, which
controls the communication between the local and the remote CSMs. Due to its entirely
decentralised architecture, it provides capabilities for DOS attacks as failure of certain nodes
do not impact the way, the remaining nodes are working. The responsibility of decision
making is entirely kept on the local node.

The implementation of the Cooperating Security Managers has only gone as far as a first
prototype, which is not much known about, but some general information about the achieved
results. However, it is not shown in the paper that the implementation itself is made up
by many components in order to facilitate failover procedures for example. Due to missing
authentication facilities it would be impossible for this approach to defend against internal
attacks.

Extensibility and collaborative options The CSM approach ended up in a prototype imple-
mentation 10 years back and was not concerned about integrating other Intrusion Detection
Systems into itself as it was rather a prototype implementation for proving its capabilities
for user tracking. Same way, there is no information available that certain standards were
employed for communication channels.

As it is very limited in its functionality there was supposingly not much point to equip it
with many configuration options. The resulting program was reported to run under Solaris
Unix only, although the authors claim it applicability to Windows systems as well. In the
end there is neither a way to integrate this approach with potentially available local security
measures, nor is there any way reported to interact with a centralised management console.

Autonomous agents for Intrusion Detection (AAFID)

The approach of autonomous agents is a very light weight approach for gathering and report-
ing intrusion detection audit data within a local area network, as event data finally has to
end up in a central data repository called Monitor.

This approach is currently not continued anymore; so the lastest information available was
in the paper from 1998 named after the approach “An Architecture for Intrusion Detection
using Autonomous Agents” (Balasubramaniyan et al. (1998)).

Intrusion Detection As AAFID is an agent based approach, intended to integrate loads of
different detection technologies, and even provides the libraries for these purposes it can cover

Chapter 7. Experiment and Analysis 193

the list of different detection types as well as it can considered to be capable of detecting the
complete set of attack patterns, at least theoretically. This way, network intrusion detection
features are finally down to the incorporated agent for this purpose. Correlation of infor-
mation is a major issue and is covered on several layers within the approach, firstly on the
capturing host with a transceiver gathering information from all connected agents; then from
monitors, receiving information from several transceivers and in the end a top-level monitor,
correlating all information from all available sources.

The latest information available for AAFID stated that no reporting facilities were present,
although plans had been created to start working on them. Response mechanisms are not in
there in the form of countermeasure engines, but the architecture is prepared to invoke other
agents depending on the output of one agent.

Distribution The presented results from the tests with the prototype state that AAFID
was not able to carry out the distribution in realtime as the monitor has to wait for results
from several transceivers and agents. Due to its approach of monitors and the capability
to place them in hierarchies AAFID is considered to be scalable and dynamic in the sense
of deployment scenarios. Due to its limitation into hierarchical constellations it cannot be
mapped onto the full set of subjacent network topologies. There is not statement made
whatsoever about the handling of duplicate event information.

Security and availability The AAFID project team stated that strong and reliable authen-
tication and encryption mechanisms have to be in place. However, as they realised a contra-
diction with these issues on performance impacts they decided not to include them in the first
place. Further discussions are carried on for these issues. Consequently, integrity concerns
cannot be satisfied; single sign-on and credential mapping objectives cannot be applied.

In the first place the AAFID architecture makes an impression of being decentralised;
however, agents are only autonomous on the host itself; in there they report to a transceiver
and are controlled by this as well. Finally, reporting and controlling are left to a central
instance, called monitor, which represents a potential single point of failure in the overall
architecture and makes it vulnerable to DOS attacks.

In the AAFID paper it is stated itself that their is no access control in place, which
ends up in missing authorisation facilities. Together with the lack of strong authentication
mechanisms it will be impossible for AAFID to resist internal attacks.

There is not much information available about how much control is left to the transceivers,
but it makes the impression, that the (top-level) monitor is in charge to control the connected
transceivers underneath it within the hierarchy. Integration of new protocols or encryption

Chapter 7. Experiment and Analysis 194

algorithms were not really an issue for the project.

Extensibility and collaborative options Interaction with other intrusion detection systems
in only possible unidirectional towards AAFID as it can integrate any kind of application using
an agent. There is nothing mentioned within the documents about employing standards for
communication channels within the approach. Modularity is definitely the major benefit of
AAFID as it is breaking down all its complexity into small agents, where each of them is in
charge of a very small set of responsibilities only.

As the experiment execution is not described in detail, there is no information available
about configuration of components. The described (second) prototype was implemented in
Perl and should run cross-platform. AAFID is not prepared to interact with any potentially
available security solutions; nor does it communicate with central management consoles.

Grid Intrusion Detection Architecture (GIDA)

GIDA is the only approach known to date combining the two technologies intrusion detection
and grid. Although, the way IDS is applied to grid technology is totally different to the
approach of IOIDS, it shows certain similarities for sets of features.

The three papers, which have been published for the Grid Intrusion Detection Architecture
(Tolba et al. (2005b), Tolba et al. (2005a) and Tolba et al. (2002)) have served as a information
base for evaluation of this approach.

Intrusion Detection The intrusion detection capabilities are hard to measure with the ob-
jectives given in here as the attitude of GIDA to protect the grid instead of local networks
does implicate the use of totally different sensor and correlation technology. In its view, GIDA
does employ different detection types as it is using signature based as well as anomaly based
detection mechanisms. A completeness for detectable attacks patterns cannot be reached
as it only detects those ones directly related to grid activities. Network intrusion detection
is purposefully left out for this approach and, consequently, we cannot apply the issue of
stateful inspection.

Communication between sides within the IDS infrastructure is carried out and, this way,
correlation of data is performed. So far, results for experiments are only reported from
executions with simulations; consequently, there was no real reporting facilities in place.
Response mechanisms are not mentioned within the publications at all. Integration with
other IDS products is not intended and would not make sense either due to its unique nature
for intrusion detection.

Chapter 7. Experiment and Analysis 195

Distribution The distribution within GIDA is performed using so-called IDS servers, whereby
each IDS sensor may connect and report to several of them in order to provide some fail-over
mechanisms. Due to the utilisation of the Globus Toolkit Security Infrastructure (GSI) as
one option for event information exchange it is unlikely that information can be distributed
in realtime, although no information is provided giving results for it. GIDA claims itself
to be scalable and dynamic, which is true in a way that every IDS sensor may connect to
different IDS servers; however, there is no information available for opportunities to layout
servers in hierarchies in order to prefilter event information and apply the approach to rather
large-scale network topologies.

For the same reasons it is difficult to apply GIDA to any considerable network topology as
it is rather static in its architecture with sensors and servers. A major advantage of it is the
focus on and employment of domains and trust-relationships between nodes. The handling of
duplicate information has not been described for this approach and, due to missing experience
within the subject area, it is not clear whether this is an issue in general.

Security and availability GIDA is located on top of the Globus Toolkit and makes use
of security facilities provided by its security component called Grid Security Infrastructure
(GSI). Consequently, it does address issues such as authentication, encryption, integrity and
public key infrastructure. There is no information provided about how the IDS servers
authenticate between each other; but it may be assumed that the utilisation of the GSI
makes them implementing single sign on and credential mapping strategies.

Due to the utilisation of the Globus Toolkit with its information service infrastructure called
Grid Information Service (GIS) as subjacent architecture the architecture is fully distributed;
hence decentralised and together with the option of choosing several IDS servers for each
resource a certain level of DOS resistance can be provided as well. GIDA is a highly modular
approach and because of GSI utilisation can take advantage of flexible ways to integrate
different communication protocols and encryption algorithms. The provided information let
conclude that responsibility is kept on the local node, although the IDS servers put a certain
level of control into the network.

Unfortunately, there is no information available about how GIDA is dealing with autho-
risation issues. Missing this information makes it hard to make any statement about the
resistance against internal attacks.

Extensibility and collaborative options The Grid Intrusion Detection System employs a
new way of intrusion detection specifically for grids only and does not interact with other
third-party intrusion detection systems. It is located around the standards available within

Chapter 7. Experiment and Analysis 196

current grid research and is built on top of the Globus Toolkit with its component Grid
Information Services (GIS) and Grid Security Infrastructure (GSI).

As GIDA experiments have only been executed on grid simulations no statement can be
made about the configuration options of the approach. Globus Toolkit is designed with
heterogeneity in mind and, as GIDA is put on top of it, it can directly benefit from that.
Integration with local systems can be achieved because it is directly integrated with its
host platform Globus Toolkit. There is no information available about how to make it
communicate with potential central management facilities.

7.2.2. Overview results and analysis

The following sections provide a structured overview for the just aforementioned results. For
each feature category a matrix is presented concluding all the information for the represen-
tatives. A small paragraph for each of them discusses the results in some more detail.

Intrusion Detection

Table 7.1 shows the results of comparing the features of each approach with the objectives
for the category intrusion detection in detail.

Table 7.1.: Feature comparison: Results category Intrusion Detection

IOIDS Snort Prelude AirCERT CSM AAFID GIDA
Detect. Types Yes No Yes Yes No Yes Yes *
Completeness Yes No Yes Yes No Yes No
Correlation Yes Yes Yes Yes Yes Yes Yes *
Stateful insp. Yes Yes Yes Yes n. a. Yes n. a.
Reporting Yes Yes Yes Yes * Yes No n. a.
Response Yes No Yes * No Yes Yes * No
Integration Yes No Yes Yes No Yes No

Only IOIDS and Prelude are able to satisfy the entire set of features within this category.
Other approaches are either focussing too much on a certain detection technology and do
not allow integration with other products in the context (Snort) or do not provide sufficient
facilities for reporting and response.

Chapter 7. Experiment and Analysis 197

Distribution

Table 7.2 shows the results of comparing the features of each approach with the objectives
for the category distribution in detail.

Table 7.2.: Feature comparison: Results category Distribution

IOIDS Snort Prelude AirCERT CSM AAFID GIDA
Real time No Yes Yes No Yes No n. a. *
Scalability Yes No Yes No No Yes Yes *
Dynamics Yes No No Yes No Yes Yes
Mapping Yes No No No No No No
No duplicates Yes No No Yes Yes * n. a. n. a.
Trust Rel.ships Yes No No No No No No

None of the selected approaches, not even IOIDS, is able to address all the given issues
within this category. As half of the other approaches IOIDS is not capable of carrying out
its work in realtime; not even near realtime.

Other approaches are often too static and pre-defined in the way their components have to
be deployed; thus, they are not supporting a complete range of deployment scenarios. Last
but not least does none of the other approaches support the establishment and processing of
trust relationships between parties.

Security and availability

Table 7.3 shows the results of comparing the features of each approach with the objectives
for the category security and availability in detail.

Besides IOIDS no approach is addressing the entire set of requirements within the security
category. For instance do the aged approaches such as CSM and AAFID not employ any
PKI functionality and lack certain features due to this fact.

Further problems with the other approaches are grounded in the employment of central
instances for certain responsibilities. This results into susceptibility to denial-of-service at-
tacks. Authorisation is sometimes not provided at all and in some cases to an unsatisfactory
extend.

Chapter 7. Experiment and Analysis 198

Table 7.3.: Feature comparison: Results category Security and Availability

IOIDS Snort Prelude AirCERT CSM AAFID GIDA
Authentication Yes Yes * Yes Yes No No * Yes
Encryption Yes No Yes Yes No No * Yes
Integrity Yes No Yes Yes No No * Yes
PKI Yes No Yes Yes No n. a. Yes
Single sign on Yes n. a. No No n. a. n. a. Yes *
Decentralised Yes No No Yes * Yes No Yes
Modularity Yes Yes * No No No No Yes
Local respon. Yes No No Yes Yes No Yes *
Credential map. Yes n. a. No No n. a. n. a. Yes *
No SPOF Yes No No Yes Yes No Yes *
Authorisation Yes Yes * No No Yes * No n. a.
DOS resistance Yes No Yes * Yes Yes No Yes
Int. attack res. Yes No Yes Yes No No n. a.

Extensibility and collaborative options

Table 7.4 shows the results of comparing the features of each approach with the objectives
for the category extensibility and collaborative options in detail.

Table 7.4.: Feature comparison: Results category Extensibility

IOIDS Snort Prelude AirCERT CSM AAFID GIDA
Int. other IDS Yes No Yes Yes No Yes * n. a.
Standards Yes Yes Yes Yes No No Yes
Modularity Yes Yes No Yes No Yes Yes
Configur. Yes No Yes * Yes * No n. a. n. a.
Heterogeneity Yes Yes No * Yes * No Yes Yes
Int. lcl systems Yes Yes Yes No No No Yes
Int. ctrl. Mgmt. Yes No * No No No No No

Besides IOIDS no approach can fully satisfy all the issues laid down for this category.
As visible in the matrix the major issue for the other approaches is the missing option for
integration with a central management console. Besides this one there is not really a trend
visible for any of the remaining features and it is more or less depending on the particular

Chapter 7. Experiment and Analysis 199

approach in question.
Attention is drawn to the column for the Cooperating Security Managers, which do not

address a single issue out of the given list for this category. As explained earlier on in the
details for this approach this can be traced back to the age of this approach on the one hand
and to the nature of an proof-of-concept implementation for CSM on the other hand.

7.3. Practical experiments

This section explains how the practical part of the experiment was carried out. In section
4.4 of the experiment definition it has been defined what issues have to be addressed with
the experiments. In here, the way they have been addressed is described and conclusions
from the achieved results are drawn. Technical details for the execution are attached in form
of protocols within appendix B - references for details to certain locations within there are
provided.

As explained before in the experiment definition, the practical experiments are broken
down into three stages, namely:

• Stage 1 – Grid for Digital Security

• Stage 2 – Basic Inter-Organisational Intrusion Detection System

• Stage 3 – Complete Inter-Organisational Intrusion Detection System and comparison

Each of the stages is presented in its own section over the following pages.

7.3.1. Stage 1 - G4DS

The first stage of the experiments is dealing with Grid for Digital Security issues only. Its
features are examined by using a simple chat application, which generates small text mes-
sages to be passed around. After some information about the setting up of the laboratory
environment, the experiment of this stage is presented in the 4 steps, as they were carried
out:

1. Populating correct messages

2. Messages population with faulty distribution domains

3. G4DS access control capabilities

4. Penetrating the G4DS network

Chapter 7. Experiment and Analysis 200

Results and analysis of each of them is presented in a separate subsection after the infor-
mation about the laboratory setup.

Installation of laboratory environment

In order to carry out the experiment as described in chapter 4, several nodes had to be set up
in a laboratory environment. In this section only the results of this setup will be reported;
the complete protocol of the steps are shown in section B.1.1 within the appendixes.

First of all, figure 7.1 describes the employed network topology and its members.

Figure 7.1.: Setup of laboratory environment

The specifications for the shown network nodes are provided in the tables B.7 and B.8
within appendix B.

As mentioned in the experiment definition (chapter 4) and explained in more detail in the
architecture description for the Grid for Digital Security (G4DS) infrastructure (chapter 5),
each G4DS node must be connected to a database backend in order to make their view of
the G4DS network persistent.

Chapter 7. Experiment and Analysis 201

The database management system (DBMS) for each node has been deployed on the same
machine. (The versions of the are shown in tables B.7 and B.8.) An SQL script is provided
for G4DS, which contains all commands in order to set up relations and entities required for
it (see listing B.13 for copy). This has been executed against each of the six databases. Table
7.5 provides on overview of the parameters of the databases.

Table 7.5.: Parameters for G4DS databases

J130 J4-12 J4-20 Grid01 Grid02 Grid03
Host j130-mp j4-itrl-12 j4-itrl-20 grid01 grid02 grid03
Port 5432 5432 5432 5432 5432 5432
User ug4ds ug4ds ug4ds ug4ds ug4ds ug4ds
Password pwg4ds pwg4ds pwg4ds pwg4ds pwg4ds pwg4ds
Database g4ds g4ds g4ds g4ds g4ds g4ds

After preparing the database, the actual G4DS system could be installed. Using the G4DS
installation documentation (see listing B.14 within appendixes for copy) this was carried out
as described in B.1.1 as part of the experiment protocol. The outcome is a G4DS topology
with parameters is described in table 7.6.

Table 7.6.: Parameters for G4DS nodes

J130 J4-12 J4-20 Grid01 Grid02 Grid03
MemberID M002 M001 M003 M004 M005 M006
DefTCs OK OK OK OK OK OK
Name j130-mp j4-itrl-12 j4-itrl-20 grid01 grid02 grid03
Logging 5 5 5 5 5 5
syslog g4ds g4ds g4ds g4ds g4ds g4ds

Routing On On On On On On
Policies OK OK OK OK OK OK
DB On On On On On On
Protocols SOAP SOAP SOAP SOAP SOAP SOAP

TCP TCP TCP TCP TCP TCP
Algorithms RSA RSA RSA RSA RSA RSA

Elgm Elgm Elgm Elgm Elgm Elgm

Following the installation and configuration of the G4DS nodes, the communities could be
created and applied as defined before in the network topology overview. Going through this
procedure, a set of communities has been put into place as described in table 7.7.

After having all the mentioned components in place, the only thing left for this stage was
to install and register the chat application.

Chapter 7. Experiment and Analysis 202

Table 7.7.: Parameters for G4DS communities

C001 C002 C003
Name g4ds 01 g4ds 02 g4ds 03
Protocols SOAP / tCP SOAP / TCP SOAP / TCP
Algorithms RSA RSA RSA

Elgamal Elgamal Elgamal
Authorities M001 M001 M004

M002 M003 M005
Gateways M001 (C002 in) M001 (C001 in) M003 (C002 in)

M001 (C002 out) M001 (C001 out) M003 (C002 out)
M003 (C003 in)
M003 (C003 out)

Additional M003
members M006

The chat application is a very light weight, text-based chat tool, which makes use of G4DS
facilities. Its source code comprises of only a single Python module, which is attached as
listing B.17 within the appendix. A G4DS service description had to be created for this
application, which is shown in listing B.18. As one can see, the members with ID M001 and
M002 act as service authorities for this service.

In order to deploy the chat application, the following steps had to be carried out on each
node:

• A private-public key pair had to be created in G4DS in order to allow the new service
to connect against the G4DS service.

• The service description had to be applied to the G4DS system.

• The member had to subscribe to the service at one of the service authorities (not for
member M001 and M002).

After finishing off these installation steps for the chat application, the created key had to
be located in a folder, accessable for the chat application. After starting up the G4DS service,
the chat application could be started and was able to connect to G4DS.

The only thing left for the setup was the synchronisation of time between the machines.
Details therefore are provided in the experiment protocols in section B.1.1 within the ap-
pendix.

Chapter 7. Experiment and Analysis 203

Stage 1 - Step 01 – Correct messages

In the first step of stage one messages were distributed from all nodes within the G4DS
network to destinations throughout the entire network.

Aim It was examined, whether population of messages is carried out appropriately. Great
attention has been drawn to the behaviour of community gateways when requested to pass
on a message into another community.

Execution The G4DS service and the chat application are started on all nodes. Afterwards,
messages are sent from one node after the using the chat service, which allows specifying
the distribution domain on the console when running. After shutting down application and
G4DS service, all available logging information and console input / output is backed up.

Results All messages are sent and delivered as expected. Listing 7.1 shows the console
output of the chat application on node M001 as an example. Messages, which have to pass
through several communities are delivered properly, too - listing 7.2 presents the parts of
the G4DS logging output dealing with forwarding a message from community C001 to C002.
(The entire logging output of node M001 for this step is presented in listing B.19 within the
appendix.)

Listing 7.1: Output of chat application on node M001¨ ¥

michael@j4− i t r l −12 : ˜/ experiment / t e s t chat s e r v i c e $ python t e s t s e r v i c e . py

Message (q to qu i t) : FR m001 TO m001

Member ID o f r e c e i v e r : M001

Message (q to qu i t) :

Received (M001 @05/17/06−19 : 5 1 : 0 3) : FR m001 TO m001

FR m001 to m002

Member ID o f r e c e i v e r : M002

Message (q to qu i t) : FR m001 TO m003

Member ID o f r e c e i v e r : M003

Message (q to qu i t) : FR m001 TO m006

Member ID o f r e c e i v e r : M006

Message (q to qu i t) : FR m001 TO c001

Member ID o f r e c e i v e r : C001

Message (q to qu i t) :

Received (M001 @05/17/06−19 : 5 2 : 2 6) : FR m001 TO c001

FR m001 TO c002

Member ID o f r e c e i v e r : C002

Message (q to qu i t) :

Received (M001 @05/17/06−19 : 5 2 : 4 6) : FR m001 TO c002

FR m001 TO c003

Chapter 7. Experiment and Analysis 204

Member ID o f r e c e i v e r : C003

Message (q to qu i t) : q

michael@j4− i t r l −12 : ˜/ experiment / t e s t chat s e r v i c e $
§ ¦

Listing 7.2: Partial G4DS logging output on node M001 for experiment stage 1 step 001¨ ¥
2006−05−18 11 : 0 1 : 5 0 199 New incoming message

2006−05−18 11 : 0 1 : 5 1 198 −− MSG ID Z778370 | SENDER M002

2006−05−18 11 : 0 1 : 5 1 198 −− S i z e o f msg (brutto | netto) : 26822 | 7214 Bytes

2006−05−18 11 : 0 1 : 5 1 198 −− Control Msg − SS: Routing Engine

2006−05−18 11 : 0 1 : 5 1 698 Access Control − message pas s ed : M001 −> C002 (A: g4ds . rout ing

. route)

2006−05−18 11 : 0 1 : 5 1 298 Sending con t r o l message

2006−05−18 11 : 0 1 : 5 3 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)

2006−05−18 11 : 0 1 : 5 3 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :

h t tp : //193 .63 . 129 . 193 :8080 .

2006−05−18 11 : 0 1 : 5 3 296 −− S i z e o f Data 26938 chars
§ ¦

Conclusion Messages within the G4DS network are transported and delivered properly. In
detail, the following statements can be made:

• Messages between two nodes within the same community are delivered directly.

• Routing of messages through several communities is working, also with more than one
hop.

• Messages, which have a community id as destination, are delivered to all known mem-
bers of this community.

• Messages are passed on to the correct application regarding the service identifier, the
message has been received for.

Stage 1 - Step 02 – Faulty distribution domains

The second step of this stage evaluates behaviour within the network in case of distribution
problems.

Aim In contrast to the first step, this step checks response to faulty behaviour. This includes
invalid distribution domains as well as partial unavailability of components.

Execution The G4DS service and the chat application are started on all nodes. After
applying changes to the network in order to suit one of the following use cases, messages are
attempted to send between several nodes:

Chapter 7. Experiment and Analysis 205

• The destination for a message represents an invalid identifier (such as an unknown
member or community id)

• The chat application is not running on the destination node and, this way, messages
cannot be passed on from the G4DS service

• The G4DS service itself is down on the destination node (either on members with
gateway functionality or without)

After shutting down application and G4DS service, all available logging information and
console input / output is backed up.

Results G4DS has shown the expected behaviour. Unknown destinations have been marked
as such within the G4DS logging output (an example is given in listing 7.3, which represents
unsuccessful messages deliveries to unknown identifiers). Furthermore, whenever a node acts
as a gateway between two communities, shutting down the application does not prevent it
from carrying out this job - service messages to this nodes, however, are marked as undelivered
within the G4DS logs of the destination node (the corresponding part of the G4DS logs of
node M003 are presented in listing 7.4).

Listing 7.3: Partial G4DS logging output on node M002 for experiment stage 1 step 002a¨ ¥
2006−05−18 12 : 1 9 : 2 7 295 Outgoing s e r v i c e message − r e s o l v ed d e s t i n a t i on s t r i n g (M007) :

[u ’M007 ’]

2006−05−18 12 : 1 9 : 2 7 900 Could not send message f o r s e r v i c e S123456: No Endpoint found

f o r Member with id M007 .

2006−05−18 12 : 1 9 : 4 2 202 Outgoing s e r v i c e message − de s t i n a t i on (community) unknown

he r e : C004

2006−05−18 12 : 1 9 : 4 2 295 Outgoing s e r v i c e message − r e s o l v ed d e s t i n a t i on s t r i n g (C004) :

[]

2006−05−18 12 : 1 9 : 4 2 295 Outgoing s e r v i c e message − de l i v e r e d to 0 / 0 d e s t i n a t i o n s .
§ ¦

Listing 7.4: Partial G4DS logging output on node M003 for experiment stage 1 step 002c¨ ¥
2006−05−18 12 : 3 2 : 4 4 199 New incoming message

2006−05−18 12 : 3 2 : 4 5 198 −− MSG ID Z148703 | SENDER M002

2006−05−18 12 : 3 2 : 4 5 198 −− S i z e o f msg (brutto | netto) : 4862 | 529 Bytes

2006−05−18 12 : 3 2 : 4 5 198 −− Se rv i c e Msg − Se rv i c e t e s t s e r v i c e (S123456)

2006−05−18 12 : 3 2 : 4 5 698 Access Control − message pas s ed : M002 −> S123456 (A: g4ds .

s e r v i c e . S123456)

2006−05−18 12 : 3 2 : 4 5 198 −− Se rv i c e Msg − no c l i e n t connected f o r t h i s s e r v i c e .

2006−05−18 12 : 3 2 : 5 5 199 New incoming message

2006−05−18 12 : 3 2 : 5 5 198 −− MSG ID Z115529 | SENDER M001

2006−05−18 12 : 3 2 : 5 5 198 −− S i z e o f msg (brutto | netto) : 32750 | 9094 Bytes

2006−05−18 12 : 3 2 : 5 5 198 −− Control Msg − SS: Routing Engine

Chapter 7. Experiment and Analysis 206

2006−05−18 12 : 3 2 : 5 5 698 Access Control − message pas s ed : M003 −> C003 (A: g4ds . rout ing

. route)

2006−05−18 12 : 3 2 : 5 5 298 Sending con t r o l message

2006−05−18 12 : 3 2 : 5 6 299 New outgoing message − d i r e c t d e l i v e r y (M005 | C003)

2006−05−18 12 : 3 2 : 5 6 296 −− Endpoint Endpoint (E534968) : MemberID i s M005 . Address :

h t tp : //192 . 168 . 1 . 2 :8080 .

2006−05−18 12 : 3 2 : 5 6 296 −− S i z e o f Data 32558 chars
§ ¦

Conclusion G4DS has proved to be able to handle faulty distribution domains on the one
hand and provides reporting mechanisms for unreachable components on the other hand. In
detail, the reporting is carried out the following way:

• Invalid destination strings are reported in the sender‘s G4DS log

• Unreachable services on the destination are only reported in the receiver‘s G4DS log

• Unreachable G4DS nodes are reported within the sender‘s G4DS log

• Errors are never reported to the connected application

Stage 1 - Step 03 – Access control evaluation

Step three performs checks for the G4DS system in order to test its access control capabilities.

Aim The XML-policy-based access control mechanism of G4DS is an essential component
in order to protect exchanged information. I examined capabilities of G4DS to pass and block
messages regarding their source or destination information.

Execution Before any of the services or applications are started, changes are applied to the
access control policy files on certain nodes in order to suit one of the following use-cases:

• One node blocks application messages for any service from one other node

• One node blocks all messages sent for a certain community

• One node blocks all messages sent to a certain service from any node

Afterwards, G4DS service and chat application are started on all nodes, and attempts are
made for distributing messages within the network. After shutting down application and
service, corresponding logging information is moved to the corresponding folder in the output
directories.

Chapter 7. Experiment and Analysis 207

Results G4DS access control blocks traffic exactly as defined in the corresponding policy
files. Access violations as well as passes are reported in G4DS logging facilities. Listing 7.5
shows partial logging data of node M001, which represents a scenario, where M001 blocks
all application messages from node M003 (the corresponding access control rule is shown in
listing 7.6). One can see that the application messages from M003 triggers an access violation
and is not passed on to the application. Other traffic, however, is allowed. Consequently,
other traffic from M003 (routed message) as well as application messages from other nodes
are passed through.

Listing 7.5: Partial G4DS logging output on node M001 for experiment stage 1 step 003b¨ ¥
2006−05−18 17 : 1 9 : 3 5 199 New incoming message

2006−05−18 17 : 1 9 : 3 5 198 −− MSG ID Z598928 | SENDER M003

2006−05−18 17 : 1 9 : 3 5 198 −− S i z e o f msg (brutto | netto) : 4844 | 525 Bytes

2006−05−18 17 : 1 9 : 3 5 198 −− Se rv i c e Msg − Se rv i c e t e s t s e r v i c e (S123456)

2006−05−18 17 : 1 9 : 3 5 601 Access Control − ac c e s s v i o l a t i o n : M003 −> S123456 (A: g4ds .

s e r v i c e . S123456)

2006−05−18 17 : 1 9 : 5 0 199 New incoming message

2006−05−18 17 : 1 9 : 5 1 198 −− MSG ID Z466511 | SENDER M003

2006−05−18 17 : 1 9 : 5 1 198 −− S i z e o f msg (brutto | netto) : 31258 | 9118 Bytes

2006−05−18 17 : 1 9 : 5 1 198 −− Control Msg − SS: Routing Engine

2006−05−18 17 : 1 9 : 5 1 698 Access Control − message pas s ed : M001 −> C001 (A: g4ds . rout ing

. route)

2006−05−18 17 : 1 9 : 5 1 298 Sending con t r o l message

2006−05−18 17 : 1 9 : 5 1 299 New outgoing message − d i r e c t d e l i v e r y (M002 | C001)

2006−05−18 17 : 1 9 : 5 1 296 −− Endpoint Endpoint (E145578) : MemberID i s M002 . Address :

193 . 63 . 148 . 149 :2000 .

2006−05−18 17 : 1 9 : 5 1 296 −− S i z e o f Data 32752 chars

2006−05−18 17 : 2 0 : 1 2 199 New incoming message

2006−05−18 17 : 2 0 : 1 3 198 −− MSG ID Z980968 | SENDER M005

2006−05−18 17 : 2 0 : 1 3 198 −− S i z e o f msg (brutto | netto) : 6264 | 525 Bytes

2006−05−18 17 : 2 0 : 1 3 198 −− Se rv i c e Msg − Se rv i c e t e s t s e r v i c e (S123456)

2006−05−18 17 : 2 0 : 1 3 698 Access Control − message pas s ed : M005 −> S123456 (A: g4ds .

s e r v i c e . S123456)

2006−05−18 17 : 2 0 : 1 3 698 Access Control − message pas s ed : M005 −> S123456 (A: chat . send

. message)

2006−05−18 17 : 2 0 : 1 4 198 −− Se rv i c e Msg − passed message to connected c l i e n t .
§ ¦

Listing 7.6: Additional rule for Access Control on node M001 to block application data from M003¨ ¥
<r u l e>

<id>R00001</ id>

<comment>Prevent node M003 to send any messages to s e r v i c e S123456</comment>

<acto r type=’member ’>M003</ ac to r>

<ac t i on type=’ a c t i o n i d ’>g4ds . s e r v i c e . S123456</ ac t i on>

<t a r g e t type=’ s e r v i c e ’>S123456</ ta r g e t>

<r e a c t i on type=’ d i r e c t ’>drop</ r e a c t i on>

</ ru l e>
§ ¦

Chapter 7. Experiment and Analysis 208

Conclusion It has been shown that G4DS is capable of carrying out access control activities
exactly as defined in the access control rules within the policy files. Policies are parsed from
the files at start-up-time of G4DS; all rules are applied in the order specified by their rule
identifiers.

Stage 1 - Step 04 – G4DS Penetration

The last part of the stage one experiments examines capabilities of G4DS to withstand attacks
which are aimed against the G4DS system itself.

Aim G4DS is intended to be used as communication platform for a variety of applications,
some of them exchanging sensitive information. Therefore it is important that the G4DS
system is able to protect itself against certain attack pattern, such as sniffing, denial-of-
service or spoofing attacks.

Execution The way, this step was carried out depends pretty much on the attack pattern
in question. Consequently, each of them is described separately:

• For the sniffing attack pattern two different kinds of examining traffic are Incorpo-
rated. Firstly, the actual traffic on the network media is captured using a network
sniffer (Ethereal), which is installed on the sender‘s machine in order to simplify the
process of accessing the data (in real-world scenarios, capturing would be performed on
a separate machine by employing techniques such as MAC spoofing or directed routing
for redirecting traffic). Secondly, small changes to the G4DS program have been applied
in order to illustrate a node within the network, acting as a gateway. This is mainly
for examining end-to-end confidentiality of the communication.

• The denail-of-service attacks have been carried out by sending a high load of traffic
to the well-known ports of the G4DS system (2000 for TCP/IP socket communication
and 8080 for SOAP communication). The payload of those messages were captured
beforehand using the network sniffer Ethereal. The generating of traffic itself was
carried out using the network tool netcat.

• The spoofing attacks were carried out within the two layers, the approach is using
addresses. One the one hand, attempts have been made to spoof the G4DS generic
member identifiers; on the other hand, IP addresses have been spoofed. In the end,
both approaches were combined and the IP address as well as the G4DS identifier were
modified for a message. Again, the traffic was recorded beforehand using the network
sniffer Ethereal and then replayed using the network tool Netcat.

Chapter 7. Experiment and Analysis 209

For all attack patterns in common, the G4DS service as well as the chat application were
started before those were carried out. Logging information was saved after all application
had been shut down.

Results As the attack patterns were very different in their nature, the results have to be
examined separately as well:

• The sniffing attempts only revealed information about the nature of the message; say-
ing it is a G4DS message (no information about the application) and the encryption
algorithm utilised. Information discovered on the gateways for routed messages does
not reveal any more than the destination of the message and the encryption algorithm
employed (an example is shown in listing 7.7, which is the output of the G4DS routing
sniffer on node M001, showing information about a message passed on to node M003).

• The Denial-of-Service attacks against the ports used by G4DS could slow down the
whole G4DS system on that node very easily. Background noise messages sent only
ones in a second were able to delay processing of information significantly.

• Spoofing attacks turned out to be unsuccessful due to the following two reasons:

– Spoofing on G4DS layer caused a signature failure when processing the incoming
message and processing was stopped immediately.

– IP spoofing attacks remained unsuccessful due to impossible establishment of TCP
sockets for the connections.

Listing 7.7: Additional rule for Access Control on node M001 to block application data from M003¨ ¥

∗∗
05/19/06 17 : 3 8 : 4 9 G4DS S n i f f e r i n i t i a l i s e d

−−
05/19/06 17 : 3 8 : 4 9

De s t i n a t i on : M003

Community: C001

raw data

−−
<?xml version=’ 1 .0 ’ encoding=’UTF−8 ’ ?>

<g4ds>

<enc>

<a lgor i thm>r sa</ a lgor i thm>

<data>

< ! [CDATA[789 c . . l oads o f hex−encoded data here . . . 0cab]]>

Chapter 7. Experiment and Analysis 210

</data>

</enc>

</g4ds>

−−
§ ¦

Conclusion After all, the resistance against attacks has been satisfying. In detail, this is
again explained for each attack pattern separately:

• Sniffing attacks remained unsuccessful due to encryption employed for both, peer-to-
peer as well as end-to-end communication. No actual data (payload data) could be
revealed with the employed sniffing technologies.

• Denial-of-Service attacks had a big impact on the processing of messages on the attacked
node. (It is believed, however, that it is impossible to protect a node or component
against DOS attacks completely - in the end there could always be Distributed DOS
attacks aimed against the node in question, which may not be countermeasured on
the local side at all.) In the end, it was not the aim to come up with a solution for
protecting a single side against DOS attacks with G4DS, but to keep the remaining
parts of the network working by total avoidance of single points of failure. This has
been achieved by G4DS as all remaining nodes kept working during the time-frame the
node in question was attacked.

• As G4DS is employing a public-key infrastructure with asymmetric keys for authentica-
tion it was impossible to spoof the identity of a node from within the network; neither
could an outsider introduce information under a known identity, nor could a G4DS
insider pretend to be another node within the network.

Overall conclusions Stage 1

With the experiments carried out so far G4DS has proved to be a secure, reliable and easy
to configure communication platform. Using the results from the four steps carried out for
the first stage of the experiments, the following statements can be made:

• Messages are delivered throughout the network as expected and dispatched to the con-
nected service application regarding the service identifier. Destination groups such as
whole communities are broken down into its members and a message is sent to each of
them. By employment of gateway technologies at the so-called Trusting Community
Gateways, messages may also be exchanged across community boundaries.

Chapter 7. Experiment and Analysis 211

• Messages with faulty distribution domains or sent to unreachable components are re-
ported into G4DS logging facilities, which allows further (manual) handling of them.

• Access control mechanisms are in place in order to protect local knowledge. Rules for
the access control mechanism are loaded at G4DS start-up time from XML-encoded
policy files and applied on the fly for any incoming message.

• Certain well-known attack patterns proved to be not successful when aimed against the
G4DS system. Hereby, sniffing and spoofing attacks turned out to be totally without
any useful result; the denial-of-service attacks did have an impact on performance on the
attacked machine, the overall system, however, could not be prevented from carrying
out its work.

In the end, the installation in the laboratory environment could act as compilation for
carrying out the experiments due to the number of machines and their assignment to trust-
ing communities including deployment of gateways to exchange information between these
communities. This laboratory installation will be kept and extended by more features and
components for carrying out experiments for the remaining two stages.

7.3.2. Stage 2 - IOIDS

The second stage of the practical experiments evaluates, whether the IOIDS approach is
capable of addressing the objectives in the context of its basic functionality. This way, message
distribution and consistence into the IOIDS data repositories of the several network nodes
is examined and certain tests are performed in order to measure time and size implications
caused by the system.

In order to structure the second experiment stage, it was broken down into the following
five steps:

1. Sending and processing of correct messages

2. Distribution of faulty messages and their error handling

3. Processing of remote events and their re-distribution

4. Different levels of event details and processing implications for certain fields within the
data structures

5. Measurement of performance and overhead

Chapter 7. Experiment and Analysis 212

This section will provide an overview, how the experiment was carried out. What the aims
for each step were and results for each of them are presented including a short conclusion
of them. After a first subsection, explaining the modifications applied to the laboratory
environment, each of the steps will be addressed within a separate section. Afterwards, an
overall conclusion for the second stage presents an overview, which objectives have been
addressed in here.

Changes for laboratory environment

The basic laboratory environment with G4DS installation on all nodes have been deployed
for the first stage of the experiments already. This installation will be used as a base for the
second stage and extended by some features and components in order to provide facilities for
evaluating IOIDS components.

The technical details for these changes are provided within the experiment protocols in the
appendency B.1.2 from page 273 onwards. This is just a high-level overview of the measures
applied:

• A database environment had to be deployed in order to facilitate persistence of the
IOIDS application.

• As part of the database deployment, a database backend system for SOAP XML RPC
has been deployed. In addition to the compulsory server software (XSM) a correspond-
ing SOAP client has been installed as well in order to allow manual insertion of events
into the event database by providing the corresponding XML description of the event.

• The IOIDS application itself had to be deployed on each node including some libraries it
is depending on. Registration with the G4DS environment was carried out by applying
the service descriptions and generating and exporting application keys.

• Configurations to all sub-systems were undertaken in order to make them communicat-
ing between each other.

Stage 2 - Step 01 – Correct messages

The first step of the IOIDS evaluation sends correct messages throughout the network and
examines distribution, receiving and proper processing of them.

Aim It was evaluated, whether information is passed appropriately between the two com-
ponents G4DS and IOIDS. Furthermore, the trigger functionality of the IOIDS system for

Chapter 7. Experiment and Analysis 213

picking up new events from the central event database (SoapSy) automatically has been
tested. Finally, it could be checked, whether event information from one node was merged
properly into the data repository of another node.

Execution After bringing up all components on each node all over the network, one event
has been inserted into each event data base one after the other using the SoapSy XML RPC
SoapClient. Logging information from both, G4DS and IOIDS as well as database status
information are relocated into the corresponding folders after shutting down all components.

Results Events have been populated throughout the network as expected; meaning, as
configured in the dataengines at configuration time, every node is sending its local events off
to the members of all communities, it is a member of. Listing 7.8 shows the relevant parts of
the IOIDS logging information on node M001, which represents a) a new event, which is sent
off to other nodes through G4DS, and b) an event, received through G4DS, to be inserted
into the local data repository.

Listing 7.8: Partial IOIDS log on M001 for sending and receiving one message¨ ¥
2006−06−07 13 : 4 0 : 3 5 198 Event Tr i g g e r : Synchronise with event database .

2006−06−07 13 : 4 0 : 3 5 197 Received event (l o c a l) with i d : 13 − put i t i n to event queue .

2006−06−07 13 : 4 0 : 3 5 197 −− Event Tr igger D e t a i l s : 1 events r e c e i v ed .

2006−06−07 13 : 4 0 : 3 8 298 Data eng ine d e t a i l s : check my l i s t s

2006−06−07 13 : 4 0 : 4 1 298 −− Process l o c a l event − subsystem dete rmina t i on : g en e r i c

2006−06−07 13 : 4 0 : 5 0 198 Event Tr i g g e r : Synchronise with event database .

2006−06−07 13 : 4 0 : 5 1 197 Received event (l o c a l) with i d : 14 − put i t i n to event queue .

2006−06−07 13 : 4 0 : 5 1 197 −− Event Tr igger D e t a i l s : 1 events r e c e i v ed .

2006−06−07 13 : 4 0 : 5 3 221 G4DS Outgoing message : Passed new message to C001

2006−06−07 13 : 4 0 : 5 3 222 −− Outgoing message d e t a i l s : a c t i on i s i o i d s . wr i t e . newevent

2006−06−07 13 : 4 0 : 5 3 222 −− Outgoing message d e t a i l s : data s i z e i s 4423

2006−06−07 13 : 4 2 : 2 7 211 G4DS Incoming message : Received data from M002 | C001

2006−06−07 13 : 4 2 : 2 7 212 −− G4DS Incoming message d e t a i l s : a c t i on i s i o i d s . wr i t e .

newevent

2006−06−07 13 : 4 2 : 2 7 212 −− G4DS Incoming message d e t a i l s : data s i z e i s 4416

2006−06−07 13 : 4 2 : 2 7 212 −− Carry out 1 r e a c t i o n s f o r t h i s remote event .

2006−06−07 13 : 4 2 : 3 4 198 Event Tr i g g e r : Synchronise with event database .

2006−06−07 13 : 4 2 : 3 4 197 Received event (l o c a l) with i d : 16 − put i t i n to event queue .

2006−06−07 13 : 4 2 : 3 4 197 Received event (l o c a l) with i d : 17 − put i t i n to event queue .

2006−06−07 13 : 4 2 : 3 4 197 −− Event Tr igger D e t a i l s : 2 events r e c e i v ed .

2006−06−07 13 : 4 2 : 3 7 298 Data eng ine d e t a i l s : check my l i s t s

2006−06−07 13 : 4 2 : 3 7 298 −− Data engine d e t a i l s : Processed 2 l o c a l events .
§ ¦

Conclusion It has been shown, that the collaboration between the Inter-Organisational
Intrusion Detection System application and the Grid for Digital Security communication

Chapter 7. Experiment and Analysis 214

platform handles the triggering, distribution, processing and integration at a fully satisfactory
extend. No data has been lost, neither was information sent to node, which were not intended
to get informed about the events in question.

Stage 2 - Step 02 – Rejected messages

With the second step of stage 2 the facilities of both IOIDS and G4DS for handling messages
from untrusted parties are checked out.

Aim As much as it is important to deliver and process all desired information, it is essential
to protect the data repositories from being tampered with faulty information, saying, infor-
mation from untrusted parties. Access control (G4DS) and data engine (IOIDS) mechanisms
should be able to identify those messages and react appropriately with dropping the message
in question and report the incident.

Execution In order to carry out this part of the experiment, changes were applied to G4DS
access control policies as well as to IOIDS data engine policies before running the tests,
for allowing or preventing certain remote nodes to access the local data repository in write
mode. After bringing up all required components on all nodes within the network, events were
inserted into the SoapSy database manually using the SoapClient at different locations within
the network. Distribution of those events regarding the data engine policies on the source
node of the message should end up either passed or dropped on the receivers node depending
on the source of the message. After inserting the events logging information from both,
G4DS and IOIDS as well as database status information are relocated into the corresponding
folders.

Results Both facilities the G4DS access control module as well as the IOIDS data engine
processor proved to be capable of filtering messages regarding their rules they have been
configured with.

Whenever the G4DS identified an incoming message to be a service message from a certain
node, which has to be dropped, either because no service messages are allowed at all to be
passed on from this node, or just for a service with a certain service ID in particular, it
reported an access control violation to the G4DS logging facilities and dropped the message
straight away.

Once, a message was passed on from the G4DS system to the IOIDS application, due to
loose rules within the G4DS access control setup, the IOIDS data engine would not process
and integrate it into the local data repository if the required rule is not available. (An example

Chapter 7. Experiment and Analysis 215

is shown in listing 7.9, where the relevant parts of the IOIDS logging information on node
M002 indicate that 0 reactions were carried out for a remote event from node M003.)

Listing 7.9: Partial IOIDS logging information on node M002¨ ¥
2006−06−07 16 : 4 4 : 5 3 211 G4DS Incoming message : Received data from M003 | C001

2006−06−07 16 : 4 4 : 5 3 212 −− G4DS Incoming message d e t a i l s : a c t i on i s i o i d s .

wr i t e . newevent

2006−06−07 16 : 4 4 : 5 3 212 −− G4DS Incoming message d e t a i l s : data s i z e i s 4423

2006−06−07 16 : 4 4 : 5 3 212 −− Carry out 0 r e a c t i o n s f o r t h i s remote event .
§ ¦

Conclusion Knowledge protection mechanisms in place for G4DS and IOIDS make sure that
information within the local data repository cannot be tampered by untrusted parties. In
detail, the two measures in place are marked by the following attributes:

• The G4DS access control module is the first protection mechanism for incoming mes-
sages. Identified by the action string of an incoming message and the source member
authenticated using asymmetric keys beforehand, it can filter incoming IOIDS service
messages in a reliable manner using additional access control policies provided for this
service.

• The IOIDS data engine is the second step an incoming message is passing through.
Without an explicit rule for messages from this member, the incoming event will not
be integrated into the local data repository.

Both mechanisms have reporting facilities in place (logging into files or into syslog service),
which allow tracing of rejected messages.

Stage 2 - Step 03 – Remote events

It is evaluated, whether IOIDS passes on information from remote hosts to further nodes
appropriately regarding its corresponding data engine policies.

Aim On top of distributing information from locally deployed event sources, IOIDS is also
able to reuse information from remote sources, meaning other nodes within the G4DS net-
work, and pass it on to further nodes. Hereby, it is very important that only information
is passed on to nodes that are intended to know about those events - otherwise the trust
relationship between the original source would be underminded.

Chapter 7. Experiment and Analysis 216

Execution Certain changes have to be applied to the data engine policies on some nodes
within the network in order to set them up for passing on remote event information (a sample
rule for node M001 is shown within the appendix as listing B.4). Afterwards, events are
generated manually for the SoapSy databases on certain nodes using the SoapClient. Finally,
logging information from both, G4DS and IOIDS as well as database status information are
relocated into the corresponding folders.

Results By examining IOIDS logging information, it could be proved that the nodes in
question did pass on the appropriate messages exactly to the nodes defined in the IOIDS
data engine policies. An example is presented in listing 7.10, which shows the processing of
an incoming event from the remote source M002, the passing through the data engine and
the final re-distribution to node M003.

Listing 7.10: Partial IOIDS log on M001 for passing on one remote event¨ ¥
2006−06−08 10 : 3 8 : 3 9 211 G4DS Incoming message : Received data from M002 | C001

2006−06−08 10 : 3 8 : 3 9 212 −− G4DS Incoming message d e t a i l s : a c t i on i s i o i d s . wr i t e .

newevent

2006−06−08 10 : 3 8 : 3 9 212 −− G4DS Incoming message d e t a i l s : data s i z e i s 4416

2006−06−08 10 : 3 8 : 4 0 212 −− Carry out 1 r e a c t i o n s f o r t h i s remote event .

2006−06−08 10 : 3 8 : 4 4 198 Event Tr i g g e r : Synchronise with event database .

2006−06−08 10 : 3 8 : 4 4 197 Received event (l o c a l) with i d : 37 − put i t i n to event queue .

2006−06−08 10 : 3 8 : 4 4 197 −− Event Tr igger D e t a i l s : 1 events r e c e i v ed .

2006−06−08 10 : 3 8 : 4 7 298 Data eng ine d e t a i l s : check my l i s t s

2006−06−08 10 : 3 8 : 4 7 298 −− Data engine d e t a i l s : Processed 1 l o c a l events .

2006−06−08 10 : 3 8 : 4 9 198 Event Tr i g g e r : Synchronise with event database .

2006−06−08 10 : 3 8 : 4 9 197 Received event (l o c a l) with i d : 38 − put i t i n to event queue .

2006−06−08 10 : 3 8 : 4 9 197 −− Event Tr igger D e t a i l s : 1 events r e c e i v ed .

2006−06−08 10 : 3 8 : 5 1 221 G4DS Outgoing message : Passed new message to M003

2006−06−08 10 : 3 8 : 5 1 222 −− Outgoing message d e t a i l s : a c t i on i s i o i d s . wr i t e . newevent

2006−06−08 10 : 3 8 : 5 1 222 −− Outgoing message d e t a i l s : data s i z e i s 4416
§ ¦

Conclusion IOIDS remote event passing on is an important feature to reuse information
from remote sources. In the current stage it is only the single event, which can be redis-
tributed. After further future developments, however, event information from remote sources
and local sources is supposed to be correlated and the results are supposed to be distributed,
which requires strong protection mechanisms in place for keeping up with the trust rela-
tionships between members. Due to the employment of XML formatted policy files the rule
engine can be extended very easily in order to address such a behaviour - the generic measures
to protect the information are in place already.

Chapter 7. Experiment and Analysis 217

Stage 2 - Step 04 – Content and levels of detail

It is examined, whether all information available for one event on the source, no matter down
to how much detail, is transmitted to and processed at the receiver‘s side.

Aim The SoapSy database comprises of a number of relations which are linked to each other.
Regarding the level of details available for an event IOIDS should pick up all information
and insert an exact copy of the event on the receivers side no matter how many details are
provided. Furthermore, it is important to avoid duplicate entries in the data repository;
especially, as the same event might be received from several locations due to aforementioned
redistribution features. Measures should be in place to identify those duplicates and avoid
insertion of a second identical data set.

Execution The way, data is inserted into the SoapSy database using the SoapClient is the
providing of a single XML document, which contains the complete set of information for a
single event. Different XML documents were prepared, each of them containing a different
level of detail - saying, how many related information will be linked within the database to
the core event information.

Furthermore, one event was taken and only the timestamp was changed for it slightly to
create another, yet very similar event.

After bringing up all the components on the nodes within the network, these created events
were inserted on one node using the SoapClient. After all messages had been distributed
throughout the network, nodes were shutdown and available logging information was moved
to the corresponding output folder.

Results By comparing content between the data repositories of the IOIDS event source and
the destination of a message it could be shown, that messages of all details are processed,
transmitted and integrated completely as well as correctly. No data has been lost in any
stage of this process, nor were any unknown data fields filled up with random or predefined
values.

Furthermore, insertion and processing of similar or equivalent information produced the
following results:

• Identical events are only stored ones in the database

• Differences within related information (such as source or destination of an attack) are
only generating a new entry within their relation if information changes; new entries

Chapter 7. Experiment and Analysis 218

are created for the relations referring to this one using foreign keys due to the change
in the foreign key.

• Whenever one entity of a relation extends another entity by more information, a new
entry is created. (e.g. whenever there is an entry for a computer already maintaining
the IP address of this node only and then an event specifies a computer with exactly the
same IP address but another host name, a new entry will be created in the corresponding
relation)

The output of the SoapClient program in listing 7.11 proves this behaviour. Two events
had been used, which were completely identical apart from the timestamp. The events were
inserted into the database in the order a, b, a - by examining the output of the SoapClient,
one can notice that the second insertion of event a comes back with exactly the same primary
key (event id) as the first insertion.

Listing 7.11: Console output for SoapClient on node M004 for inserting similar messages¨ ¥
michae l@gr id01 : ˜/ experiment /output /M004/ stage2 /004/b$ python . . / . . / soapCl i ent . py −a

l o c a l h o s t − i 01 i n s e r t a t ime s tamp a lpha

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<RELATIONS command=”INSERT RESULTS”>

<REL name=” event ”>

<ATT name=” even t i d ” primary key=” true ”>”49”</ATT>

</REL>

</RELATIONS>

michae l@gr id01 : ˜/ experiment /output /M004/ stage2 /004/b$ python . . / . . / soapCl i ent . py −a

l o c a l h o s t − i 02 i n s e r t a t ime s t amp be ta

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<RELATIONS command=”INSERT RESULTS”>

<REL name=” event ”>

<ATT name=” even t i d ” primary key=” true ”>”51”</ATT>

</REL>

</RELATIONS>

michae l@gr id01 : ˜/ experiment /output /M004/ stage2 /004/b$ python . . / . . / soapCl i ent . py −a

l o c a l h o s t − i 01 i n s e r t a t ime s tamp a lpha

<?xml version=” 1 .0 ” encoding=”UTF−8”?>

<RELATIONS command=”INSERT RESULTS”>

<REL name=” event ”>

<ATT name=” even t i d ” primary key=” true ”>”49”</ATT>

</REL>

</RELATIONS>

michae l@gr id01 : ˜/ experiment /output /M004/ stage2 /004/b$
§ ¦

Chapter 7. Experiment and Analysis 219

Conclusion From the presented results, it can be stated that information inside the IOIDS
data repository is made persistent in a consistent and efficient way without allowing duplicate
information to be stored. This is mainly achieved by the High-level XML RPC interface for
the database, which performs those checks and only inserts information if not yet present in
the database. This interface was not created by me and is not part of this project - however,
loads of feedback from tests and experiments with IOIDS has been sent back into this project,
helping to bring it into its current status.

Stage 2 - Step 05 – Performance and overhead

With the last step of the IOIDS stage of the experiments performance impacts and overheads
produced within each layer were measured.

Aim The architecture and implementation of G4DS and IOIDS have not been developed
with major focus on performance issues; it was rather a proof-of-concept implementation to
justify its in practical environments. Nevertheless, it is interesting on the one hand, and
makes an experiment complete on the other, to measure the impacts on time and network
load generated by the components.

This step of the experiment stage is broken down into three issues, each of them addressed
with actions in their own substep. The issues in question are:

• Time elapsing from an event being generated on the sender‘s side till integrated on the
receiver‘s side

• Throughput for IOIDS, meaning how many events may be processed within a certain
time frame

• Data overhead in each of the employed components

Execution Due to the different nature of each substep, the preparations for each of them
were different as well. In detail, the following measures had to be taken before the actual
tests could be performed:

• For the measurement of time elapsing rules had to be applied for the IOIDS policy on
certain nodes within the network in order to make them passing on messages received
from another node. This generates a chain of events being inserted into the SoapSy
database, triggered and picked up by the IOIDS system and sent off to another node,
which will process and insert it in turn.

Chapter 7. Experiment and Analysis 220

• For the throughput measurements a shell script was created, which is able to insert
events into the SoapSy database in a way that it always keeps a certain constant time
gap between insertion of two events. This time gap will be reduced with every turn the
events are inserted in order to measure the performance impacts on the nodes involved
in processing the information.

• For the last part of this step a network sniffer (Ethereal) had to be put into place
and activated, which is able to provide information about sizes in the different network
layers.

After preparing the environment for this step, the components could be brought up on
all the nodes and the required messages were inserted into the SoapSy database on one
node. Afterwards, all components were shut down again and available logging and output
information were relocated to the corresponding folders on each node.

Results The achieved results for each of the three different measures are:

• The time measurement results as shown in table 7.8 revealed the expected behaviour
that with the increase of hops the time an event travels until it is reaching its final
destination increases. The number also shows that the processing of information within
IOIDS and G4DS is quite a time consuming process.

• The throughput numbers discovered that from a certain time gap on between two events,
IOIDS is not capable anymore to process those events in realtime and keeps them in a
queue for later processing. This delayed processing ends up in a number of more than
11 minutes when one event is sent after the other with no time gap between them at
all (still there is the delay, the SoapClient is causing itself by connecting against the
database).

• Table 7.9 shows the results from the measurements of packet sizes within each layer. The
first entry represents a directly delivered message between two nodes. The second entry
provides size information about a routed message - as a routed message encapsulates
one G4DS message within another one, there are two values present for that layer.

Conclusion It has been shown that the deployed G4DS / IOIDS infrastructure is not a very
quick solution for exchanging event information. Besides the justification that it has not
been developed with major focus on performance, the following issues have been identified
as possible reasons for this behaviour:

Chapter 7. Experiment and Analysis 221

Table 7.8.: Elapsed time for event travelling in IOIDS / G4DS

Source Dest. Hops Sent Received Time elapsed
M004 M005 1 08:21:18 08:21:40 22s
M002 M003 2 08:23:10 08:23:39 29s
M002 M005 3 08:25:17 08:26:01 44s

Table 7.9.: Packet size within the different network layers

IOIDS G4DS TCP
Direct msg 4421 B 3053 B 13856 B
Routed msg 4421 B 3021 B

17252 B 58010 B

• G4DS as well as IOIDS have been programmed using the programming language Python,
which is an interpretive language; hence not very fast in execution by nature

• Messages are wrapped and re-wrapped in several layers; ones within the IOIDS ap-
plication and several times inside the G4DS layer. This is a time consuming process;
especially because each wrapping is incorporating XML technologies such as DOM,
encoding technologies for the payload (hexencoding) and compression technologies for
reducing the amount of data to be sent. (see section 5.3.2 for details)

• The trigger functionality within IOIDS for picking up new events has been implemented
using a software trigger, which retrieves new events on frequent lookups in the database.
(see section 6.2.3 for details).

• The machines utilised for the experiments are not of high specifications. With the
installation instructions from the first stage (section 7.3.1) an overview had been given
- the technical details are presented in tables B.7 and B.8 within the appendix.

The mentioned issues prevent IOIDS / G4DS to distribute knowledge in (near) real time if
under high load. However, as data is kept in queues, it does not get lost and will be processed
and distributed at a later time, when the amount of new messages has decreased.

The overhead, each of the layers is producing is reasonable and due to compression measures
in place, the payload for a G4DS messages is smaller than the one of an IOIDS message, which
is carried within the G4DS message. Due to encoding measures, G4DS is employing, and the

Chapter 7. Experiment and Analysis 222

additional overhead the low-level protocol such as SOAP are producing, the payload in the
TCP segment is about four times the size of the G4DS payload.

Overall conclusions Stage 2

With the second stage of the practical experiments the mode of operation of the Inter-
Organisational Intrusion Detection System application in correlation with the already eval-
uated G4DS communication platform and its features as well as limitations including per-
formance measurements were examined. Following the results from these experiments and
correlating the statements from the low-level conclusions allow us to make the following
statements:

• The whole process, an event is travelling from being picked up from the SoapSy database,
passed on to the IOIDS data engine, which in turn may send it off to the G4DS system
if population is defined within the IOIDS policies, passed through the G4DS system
including its access control mechanisms and processed on the receivers side of the mes-
sage by passing through the same components in opposite order in order to end up in
exactly the same set of information on the receiver‘s SoapSy database, was shown to
be working.

• There is an easy and straight forward way to configure the reactions of the IOIDS data
engine using XML encoded policy files. The processing of events from local sources
may be controlled by those as well as the one of events from remote resources. Event
information from remote sources may be reused and passed on to another distribution
domain without tampering trust relationships between nodes.

• Information within the distributed IOIDS system is kept consistent. An event at the
receiver‘s side is an exact copy of the event available in the database of the sender.
Event persistence is performed in a reliable and efficient manner.

• The correlation of IOIDS and G4DS turned out to be not a very performant way
of exchanging event information. High load of events to be processed and distributed
prevents the system to carry out its work in real-time, not even near-real time. However,
the following statements can be made to put these results into perspective:

– IOIDS is by its nature not supposed to exchange low-level event data and this
way establishes a database on each node, which is an exact copy of the other‘s
data repositories. Instead, intelligent rules for the data engine shall enable the

Chapter 7. Experiment and Analysis 223

IOIDS system to correlate information and only distribute results or information
of a more abstract nature between the nodes.

– Due to the high grade of configuration options for both IOIDS and G4DS it is
also possible to layout machines in kind of a hierarchical manner, meaning to
have nodes in the bottom layer exchanging quite low-level and detailed raw event
information and the more a node is placed up in the hierarchy the less details are
dealt with.

– All components for one side had always been placed on the same machine (G4DS,
G4DS data base, IOIDS, SoapSy database), which will not mirror a real-world
scenario in the end either.

Nevertheless, the IOIDS installation within the laboratory showed that intrusion detection
event information can be shared within a network, when the nodes are grouped in so-called
communities and base their distribution as well as processing decisions using rules on these
and the trust-relationships established within them.

The laboratory environment in place now will be reused for the last stage of the experiment,
explained in the upcoming section. Certain additions have to be applied in order to exam-
ine the fully deployed IOIDS infrastructure, using real-world data generated by third-party
intrusion detection system sensors.

7.3.3. Stage 3 - IOIDS data integration - Preparation

In the last stage of the practical evaluation process the IOIDS architecture is to be examined
as a whole and, this way, its features and abilities shall be compared to similar or related
projects, which were deployed in the laboratory environment as well.

The following sections give details about the changes in the laboratory made for the third
stage, whereby the changes for the IOIDS infrastructure are explained first. Afterwards,
the related projects with their deployment procedures are introduced. The environment
deployment is finished off with an overview of all working components.

For all approaches in common, the following assumptions are made, which should be hit
by their configurations:

• A high-level installation shall be deployed, meaning that one single node represents a
whole organisation; communication between to nodes is always considered to act as
traffic between two organisations we want to simulate. Consequently, all components
required for a single-side installation have to be deployed on the same computer.

Chapter 7. Experiment and Analysis 224

• Nodes within the network have different roles assigned, that means in particular that
nodes M002, M004 and M005 act as data sources.

• Every node within the network maintains its own data repository and acts as a data
sink.

• Domains or so called communities are deployed as shown for the previous two stages.
Consequently, we are still dealing with the three communities C001, C002 and C003.

• Nodes M001 and M003 have the responsibility to pass on information between domains;
this behaviour might be called depending on the approach gateway functionality or
relaying.

• Node M006 will be used as a penetration node only for this stage; meaning no IDS
software components need to be deployed on it.

Deployment of IOIDS environment

As most of the components have been set up in the previous stages of the experiments, only
the following few actions had to be undertaken to configure IOIDS for this stage:

• A snort distribution had to be installed on the source nodes M002, M004 and M005,
which had to include the PostgreSQL output plug-in. The database management system
had to be prepared for holding snort event data and snort had to be configured to log
into the locally available database.

• The so-called SnortDB-To-SoapSy converter had to be installed on the same machines
in order to pick up snort events from the snort database and migrate them into the
central SoapSy database. (some more information is given in the following paragraph)

On top of these changes, a network penetration tool had to be installed on the node in
the managed network 192.168.1.0/24 for triggering alerts within snort when attacking the
capturing nodes. The nessus daemon was installed on M006; the GUI based nessus client on
M004.

SnortDB to SoapSy Converter There was a need to insert real event data into the SoapSy
database to be picked up by IOIDS and passed around within the network. Since the SoapSy
project itself has still been in its early stages, there was not yet any tool available doing this
job. Consequently, a light weight application was developed by me as part of the project, to
generate real-world event data into the SoapSy database. The application named SnortDB-
To-SoapSy converter is marked by the following attributes:

Chapter 7. Experiment and Analysis 225

• It is an application written in Python, which picks up event information from a SnortDB
(PostgreSQL) database using software-trigger-functionality and after re-formating the
data, puts it into the appropriate format into the SoapSy database using the XML RPC
interface named XSM.

• Whenever possible, all data available in the SnortDB-database will be mapped into
fields of the core within the SoapSy database.

• All remaining data goes into the SoapSy extensible for Snort - consequently, not a
single piece of data can get lost when migrating from the Snort database into the
SoapSy database.

When developing this program, I was aware of the fact, that configuring snort to log into
the database, picking them up from there using a software trigger and passing them on
into the SoapSy database using XSM is not the most performant solution for creating real
world data in the repository. However, development of these converters is beyond the scope
of the project and due to the structure of data, provided by the snort database, it was a
very straight-forward way to migrate into SoapSy. (Faster technologies could have been text
analyser for snort event output files or even a snort output plug-in, which would directly log
into the SoapSy database.)

Deployment of Prelude environment

A normal prelude deployment comprises of sensors, managers (which may interact in form of
relay managers), a database backend and a frontend called PreWikka. A sample deployment
scenario taken from the Prelude handbook (ThePreludeTeam (2006)) is shown in figure 7.2.

The installation of prelude components has been carried out using the Prelude handbook
(ThePreludeTeam (2006)) available on the internet. With the idea in mind to demonstrate
a deployment of large-scale environments, major focus has been drawn on the installation of
managers and the sensors are acting more like a tool for generating some real world event
data.

In detail, the following components have been installed the following way (the technical
details are shown in section B.1.3 within the appendixes):

• Besides node M006 all nodes within the laboratory environment (M001 - M005) were
equipped with a Prelude-Manager installation. In order to carry out this, the prelude
libraries had to be installed first. (M006 has been left behind here as it is acting as a
penetrator for the stage three scenarios)

Chapter 7. Experiment and Analysis 226

Figure 7.2.: Prelude deployment scenario (src: ThePreludeTeam (2006))

• A database (PostGreSQL) had to be installed for each of them. The database manage-
ment system for each of them was installed already due to databases installed for former
experiment steps; consequently, the database is always running on the same machine.
The prelude database libraries were installed, so that the prelude manager was able to
connect to the prelude database backend.

• The nodes with G4DS ids M002, M004 and M005 were equipped with an additional
snort installation, which is able to output into the prelude system by using a prelude
output plug-in.

• The prelude output plugins of snort were registered with the corresponding local prelude
manager and keys and certificates were exchanged.

• On node with id M001 the web-based prelude analysis console PreWikka was installed.
The therefore required database was installed on the local PostGreSQL database man-
agement system.

• Certain managers were prepared to be able to act as relay managers between each other;
meaning, certificates were exchanged and rules were prepared. These are explained in
more detail in the execution of the stage 3 experiments.

Chapter 7. Experiment and Analysis 227

Deployment of SnortNet environment

For SnotNet the installation process could not be carried out as straight forward as expected.
While the deployment scenario for the snort components could be planned well in a similar ap-
proach as explained for the Prelude environment using the SnortNet Manual (Fyodor (2000))
(an example deployment taken from this manual is shown in figure 7.3) the implementation
and deployment of those turned out to be rather difficult.

Figure 7.3.: SnortNet deployment scenario (src: Fyodor (2000))

In detail, during the process I was facing the following problems:

• Besides the initial SnortNet publication (Fyodor (2000)) from 2000 there is no docu-
mentation available; in particular does this include deployment instructions.

• The source code for the project is not made available in a proper way and had to be
downloaded from the Snort CVS repository in older branches.

• Nevertheless, the source code had not been touched for more than 5 years - meaning
no updates or maintenance works were applied.

• Consequently, the SnortNet reference implementation cannot be applied to current ver-
sions of the snort intrusion detection system implementation. However, due to missing

Chapter 7. Experiment and Analysis 228

documentation there could not be found a way to apply it to an older version of snort
either and use that one instead.

• The project is discontinued in a way that no further information is available. The
project website (http : //snortnet.scorpions.net/) is not available anymore without
giving any information about referrals.

Facing all these problems, where there seemed no way to overcome them in order to carry
out experiments with the implementation, it was decided to discontinue experimenting with
SnortNet and looking out for available and adequate alternatives instead.

From the list of available approaches in the context of distributed intrusion detection sys-
tems as discussed in very detail in 2.4 and compared in the experiment definition in section
4.3.1, the AirCert project was chosen for laboratory deployment despite its high complex-
ity. Consequently, the following section describes the efforts and problems on deploying the
implementation of this approach in the laboratory environment.

Deployment of AirCert environment

With the idea in mind to deploy a scenario very similar to the ones of the IOIDS and Prelude
infrastructure, available documentation has been researched in order to identify required
components and their responsibility within the overall AirCert infrastructure. An AirCERT
handbook is available for these purposes, which describes, how components interact on the
one hand and gives deployment guidance on the other hand.

In figure 7.4 is shown a peer-based deployment scenario taken from this handbook. How-
ever, AirCERT is not limited to peer based deployments and can support hierarchical ar-
rangements of components as well.

Besides the handbook, very little information was available for deploying the components
and make them interacting. In detail, I was facing the following problems during my attempts
of deploying an AirCERT infrastructure:

• Although the AirCert project team continues their work and is still progressing on
implementation, it seems to focus on another (somehow related) project called NetSA
Aggregated Flow1 right now, so that the latest sources available for AirCert components
have aged two years already.

• Released software is either in alpha or beta status and proved to be neither very reli-
able nor easy to configure. Again, documentation describing the way, how to use the

1http : //aircert.sourceforge.net/naf/index.html

Chapter 7. Experiment and Analysis 229

Figure 7.4.: AirCert Peer Topology (Src: Trammell et al. (2005))

components (especially the way command line arguments have to be passed to them)
is incomplete, unsatisfying and has to be pulled together from the different versions.
Examples were not provided at all.

• There is no contact information available for the overall project. Requests to authors
of certain components remained unreplied.

• The entire infrastructure is very complex - there is no opportunity of carrying out a
light-weight deployment of AirCert. In detail, the components for a single side within
the infrastructure comprise of (talking about the simplified version, which does not
include the components for database input processing):

– A snort installation, configured to log text-based output into the local filesystem

– The AirCERT rex Text File Normaliser for processing the Snort output and cre-
ating XML formated output from it (SNML)

– The AirCERT twrap module for archiving and packing information before trans-
mission

– The AirCERT dredge DAV client, which is in charge of transmitting the collected
data to the data collector

– An Apache web-server installation, in charge of receiving this information using

Chapter 7. Experiment and Analysis 230

modules for WebDAV (mod dav), certificate authentication (mod ssl) and URL
rewriting (mod rewrite) and storing it in a local directory.

– The AirCERT untwrap modules for unpacking and extracting the information from
the archives.

– The AirCERT pathogen Relational Database De-normaliser, which processes the
received event information in SNML format and puts it into the database.

– (optionally) the ACID analysis console for AirCERT, a web-based frontend for
displaying the content of the event database.

– An openssl infrastructure, where each of the nodes acts as a certificate authority.
Certificates have to be derived for each sensor and for each collector. They have
to be converted into certain formats (x509 for CAs and pkcs12 for clients) as
AirCERT components are not prepared to handle the standard formats created
by the openssl implementation.

When installing the aforementioned components, a major issue besides incomplete doc-
umentation was the lack of up-to-date SQL scripts, preparing the databases for storing
required information. Manually created SQL scripts for updating the database rela-
tions created from error messages during execution could not totally eliminate these
problems.

• Although, the AirCERT handbook provides quite a good entry point of documentation,
there is big lacks for gaining information about the components. Often, readme files
and manuals only exist in form of unmodified templates; code examination becomes
very difficult due to lack of comments, giving information about what certain modules
or functions are responsible for.

The mentioned reasons were forcing me to give up on experiments with AirCert after about
a week of unsuccessful deployment attempts and focus on the remaining projects instead. The
presented list of representative projects in the context of distributed intrusion detection (see
section 4.3.1) does not offer any other item, which is suitable for practical evaluation for the
IOIDS project, mostly due to missing implementations.

Consequently, the comparison part of the practical evaluation process for IOIDS will be
based on one further product only, namely Prelude IDS. This does still provide meaningful
information, since Prelude is an up-grown and popular approach in this context. Finally,
a further comparison with other approaches has been done by feature comparison in the
beginning of this chapter (section 7.2) already.

Chapter 7. Experiment and Analysis 231

After all, the devices in the laboratory environment are running the services and maintain-
ing databases as described in figure 7.5.

Figure 7.5.: Overview of components and databases on laboratory machines

7.3.4. Stage 3 - IOIDS data integration - Execution

The following five subsections explain how the last stage of the experiments have been carried
out and what conclusions could be derived from the given results. As maintained for the
former stages, this one has been broken down into steps as well; which are:

1. Distribution of correct event information

2. Generation of high load of event information on certain nodes within a managed network

3. Availability issues and denial-of-service resistance

4. Data engine and access control

5. Performance and benchmarking

Each of those steps is discussed in its own subsection over the upcoming pages.

Chapter 7. Experiment and Analysis 232

Stage 3 - Step 01 – Distribution of correct event information

The third stage of the experiment is started up with processing of event data for a machine
placed on the internet.

Aim It shall be examined, how the approaches behave when requested to process event
information, which is common for a network IDS placed on the internet. This shows their
behaviour under ordinary load and examines, whether the whole process from event trig-
gering through distribution and processing up to integration at remote sides is carried out
appropriately.

Execution In order to carry out this step, the network sensor had to be placed on a node
outside the managed network; meaning directly connected to the internet. This was achieved
by using node M002, which is on the university’s network and has a public IP address.
Certain distribution rules had to be set up (in the IOIDS data engine policies as well as the
Prelude-Manager configuration files) in order to enable sharing of event information between
the nodes. Three runs over five minutes were executed with each IDS, whereby these ones
were alternated in order to achieve conditions as similar as possible for the two of them.

Results An average number of 40 events was generated by the snort sensor for each of the 6
runs. It could be shown that both approaches handles the incoming events properly; meaning,
an entry was inserted into the local data repository and distribution was performed to node
M001, as set up for this stage. Figure 7.6 shows the results presented on the receiver side
of the Prelude relaying process M001. (A screenshot with the details of the given events is
shown in figure B.4 within the appendixes.)

Conclusion Both approaches IOIDS as well as Prewikka showed to be capable of processing
all the events captured by snort. They were made persistent in the local event database
and passed on to the remote destination M001, which contained exactly the same event
information as M002 after execution of this stage.

Stage 3 - Step 02 – High load

The second step of this stage examines the approaches in the abilities to maintain working
under high load of incoming event information.

Chapter 7. Experiment and Analysis 233

Figure 7.6.: Prelude analysis console PreWikka event output

Aim It is an important issue that data does not get lost when the approach in question is
requested to process a high number of events. Furthermore, it was an objective of this project
to deliver event information in real-time or at least near real-time. It shall be examined, from
which load on this issue cannot be addressed anymore by the approaches in question.

Execution The network sensor snort is now placed inside the managed network and the
alerts within snort are triggered by running a network analysis tool (Nessus) against the
capturing nodes. The nodes within the managed network are setup to report events between
each other (as far as possible). In order to generate a high number of events on the snort
sensors, three full nessus scans (including all available plugins) were targeted against the
capturing nodes (the configuration, execution and displaying of results of nessus is shown in
figures B.1, B.2 and B.3). Each nessus run was expected to last about 5 minutes and in total
the three should generate more than 1000 events on each capturing device.

The test had to be cancelled for the IOIDS approach as it was not capable to process this
vast amount of event information. In detail, the following components were taken down after
certain conditions:

• The SnortDB-To-SoapSy converter was shutdown on both nodes (M004, M005) after

Chapter 7. Experiment and Analysis 234

it had inserted 750 events in average on each of them. This was several minutes after
the last event had been triggered and inserted into the database by the snort sensor.

• The IOIDS system together with the G4DS system were shut down after about one
hour of processing the events as, even after 45 minutes passed since the last event had
been inserted into SoapSy, IOIDS was not able to catch up with the amount of event
data.

Results Prelude IDS was capable of dealing with the high amount of event data without
showing any performance impact (figure 7.7 presents the results of the events, which were
received on M003 from M004 and M005). IOIDS, in contrast, was in serious problems when
dealing with this amount of data - it was falling behind with processing of the incoming data
in a way, that even after waiting about 45 more minutes after arrival of last event, not all
events had been processed yet.

Figure 7.7.: Prelude analysis console PreWikka event output

Conclusion The issue of not missing out on any data could be satisfied by both approaches
properly. The time passing between the arrival of an event and its processing and distri-
bution is a big difference: when Prelude seemed to process and distribute all information

Chapter 7. Experiment and Analysis 235

in near-realtime, IOIDS could not even post-process the event information when not giving
it anything else to process for another 45 minutes. One minor issue was identified in the
distribution rules for the events: when Prelude was only distributing from M004 to M003
and M005 to M003, IOIDS was always distributing peer-based in all directions. Further dis-
cussion of this issue and problem identification are made in step 4 of this stage, when dealing
with availability issues and denial-of-service resistance.

Stage 3 - Step 03 – Denial of Service and availability

Step three looks to address availability issues of the approaches by switching off certain
components within the network and examine the capabilities of the approaches to keep the
overall system working.

Aim It is impossible to deploy a system, where each component is completely resistant
against Denail-Of-Service attacks itself. The aim of this step is not to check the DOS resis-
tance of single components (as it is not believed to be the major issue), but on the availability
of the overall system, whenever certain components are switched of.

Execution The approaches comprise of different components, namely the IDS component
and a communication component. Taking the network as one further target, there are four
use cases to cover for denail-of-service attacks:

• All components are fully functional.

• The IDS component is taken down.

• The communication component is taken down.

• The network interface itself is penetrated.

As there are nodes within the network acting as so-called gateways, penetration of them
should have another impact when targeted against them. Consequently, each of the afore-
mentioned use cases is carried out twice; firstly for a data source node and secondly, for a
node responsible for passing on information between communities.

Ones, the component in question has been taken down, a port scan will be targeted against
a capturing node in order to generate a reasonable amount of event information. It was
examined, how the remaining components could keep up with their work and, furthermore,
what recovery procedures were in place for the approach after the penetrated component has
been brought up again.

Chapter 7. Experiment and Analysis 236

Results Prelude IDS benefits a lot from its built-in recovery mechanisms. Whenever any
component within the path the information is supposed to travel is not reachable, it buffers
the events and tries again and again to deliver them. This is the case for the prelude manager
on the source node (where the event information is buffered within the Snort prelude output
plug-in) as well as the prelude manager on the gateway, which got the information passed on
from the source prelude manager, running the snort sensor.

The IOIDS implementation benefits from its database software trigger implementation in a
way, that messages from the SoapSy database are picked up immediately after bringing back
up the IOIDS program. As there is not yet any real recovery mechanism built into IOIDS or
G4DS, messages, which could not be delivered due to G4DS problems get lost.

Conclusion Prelude‘s manager architecture comprises of a single component, the prelude
manager only. Consequently, a problem with this single component prevents the whole system
from working on the local node. If the node in question is not on the gateway path of event
information, remaining nodes are not impacted by problems on one node. Furthermore,
sophisticated and reliable fall-over mechanisms enable Prelude to reestablish a consistent
state on the node after bringing it back up.

The IOIDS approach has not yet implemented any real recovery mechanisms. However,
due to its database implementation it is able to post-progress event information if the IOIDS
system had gone done by any reason for some time. Furthermore, the modularity of the sys-
tem with separation of IDS component (IOIDS) and communication component (G4DS) can
minimise the impact in case of problems. Theoretically, there would not be a big problem to
implement recovery mechanisms within IOIDS, which holds events, which cannot be delivered
when G4DS is down, and sends them off via G4DS after problems have been resolved.

In the end, the two approaches follow a different attitude as well. As Prelude is considered
to be implemented for inside deployment, IOIDS is supposed to be deployed on a wider
area. Prelude can only deliver messages in push mechanism; IOIDS however could after
reestablishment of connections send a query to certain nodes in order to get events from a
certain timestamp onwards.

Stage 3 - Step 04 – Date engine and access control

It is examined, whether the approaches are able to adopt easily rules for distributing to and
integrating knowledge from certain remote nodes.

Aim The whole idea of exchanging event information between organisations is based on trust
and trust relationships between the involved parties. It is therefore essential, that nodes can

Chapter 7. Experiment and Analysis 237

configure the behaviour of their deployed system in a way that information is passed on to a
certain set of destinations on the one hand, and that knowledge from certain remote sources
shall be processed in a certain way on the other.

Execution For the execution of the test the components have to be reconfigured again and
again in order to suit the different use cases, that shall be mirrored by them. When we
consider two different distribution domains α and β, these use cases are as follows:

• Accept all traffic from domain β; drop events from domain α

• All locally generated events from event source A shall be distributed to β, local events
from source B to domain α instead

• All event information received from β shall be redistributed into domain α

• On top of the previous rule, the other direction shall be addressed as well and event
information shall also be passed on received from domain α into domain β

• Protection mechanisms shall be tested by only passing on information from domain β

to domain α if the knowledge chunk in question is not classified as a private piece of
information

• All information from domain α shall be dropped straight away

Certain sample events had to be created in order to insert them into the system manually.
Ones, all configurations had been applied for the use case in question, the experiment was
carried out for the two approaches one after each other. Log files and other results were
relocated into the corresponding output folder.

Results As far as possible to configure, the two approaches achieved the desired results.
Prelude IDS, however, could not be configured at all to carry out the following two items out
of the use cases list:

• The second use case with the distribution decision based on the type of the event cannot
be mapped into Prelude as is does not distinguish between different types.

• Prelude IDS does not support classification or any other kind of protection levels to be
assigned to events. Consequently, it was not possible to configure it in a way to base
distribution decisions on those values.

Chapter 7. Experiment and Analysis 238

Another problem for Prelude IDS was the distribution of event information in two directions.
This resulted in bouncing of events between the two nodes in question and the prelude-
managers had to be switched of in order to stop this behaviour.

Conclusion The differences in nature between the two approaches have become obvious in
this step. As IOIDS was developed with bi-directional, inter-organisational event exchange
in mind, Prelude IDS rather seems to be supposed to be deployed inside organisations and
better supports hierarchical layout of managers. As the use-cases chosen for this step have
to map the project‘s aims of inter-organisational information exchange, Prelude shows its
down-side for these purposes.

Besides the problems discussed in the results sections already, Prelude does not support
easy re-configuration of distribution and integration rules. When the distribution domain
may be changed still quite easily by reconfiguring relay managers within the configuration
files, the integration of event information has to be configured by messing around with the
key list of trusted sources. Whenever a source shall be disabled, it cannot just be marked as
such a one; the key has to be removed from the corresponding list using Prelude admin tools.

IOIDS in contrast is able to satisfy all the requirements coming with the use cases com-
pletely. Not only did the results show exactly the desired figures, but the configurations could
also be carried out very easily by just changing IOIDS or G4DS policy files.

Stage 3 - Step 05 – Benchmarking

In the very last step of the experiments it was examined, how the different approaches perform
in the view of time and size overhead benchmarks.

Aim Although there was not payed much attention to performance issues when developing
the IOIDS approach, the tests in here shall give a brief idea of time and size impacts caused
by it in comparison to the Prelude IDS. Figures were gathered and analysed for the following
issues:

• Maximum number of messages being processed within a certain time frame

• Time elapsing for the full processing, distribution and integration of a single event

• Size overhead for the different network / application layers

Execution For this step it was essential to be able to generate an exact number of events
within a given time frame. A simple snort rule was created for generating a single alert,

Chapter 7. Experiment and Analysis 239

which could be triggered with a simple netcat command (see section B.1.3 on page 293 for
details). By putting this given netcat command inside a loop and create a time gap between
two netcat executions it was possible, to generate exactly a pre-defined number of events
within snort for a certain time frame.

Further adjustments had to be done on some of the nodes for their IOIDS data engine or
Prelude Manager policies in order to enable passing on of messages into further domains. A
timestamp was always taken directly before each run in order to measure elapsed time.

Size overhead within the network layers as well as confidentiality issues have been addressed
by placing a network sniffer (Ethereal) on certain locations within the network and capturing
the corresponding traffic for the approaches in question. The corresponding Ethereal output
dumps were relocated together with other logging output into the corresponding folder within
the output directory.

Results As the nature of the different parts of this step are rather different, the results have
to be examined separately, too:

• The measurements of time elapsing for an event being processed could be taken from
timestamp information within log files for IOIDS. Prelude does not include the informa-
tion for the different hops within its logfiles; so I could only use timestamp information
from last accesses to the logfiles for this project. The results for this step are presented
in table 7.10.

• The possible throughput was measured in two ways; firstly, how many items got lost,
and secondly, how much time did the approach in question post-progress event informa-
tion since no new events had arrived for a certain amount of events within 2 minutes.
The results for this part are presented in table 7.11. There are no values for IOIDS
from the time gap of one second on because it was shown in the tests before that IOIDS
was not able to process the number of events anymore. The test with 240 events per 2
minutes was executed twice due to the surprising drop of events in the Prelude system.
However, the second run produced exactly the same number of lost events.

• The test for size overhead and confidentiality issues were carried out in one go. As
both approaches are employing encryption technologies for all their communication,
data could not be extracted from the sniffing output. The numbers for the size of event
information sent over the network are shown in table 7.12.

Chapter 7. Experiment and Analysis 240

Table 7.10.: Time elapsing for event distribution

Sent Local 1st hop 2nd hop 3rd hop
IOIDS 11:54:01.505 3.5s 24s 40s 59s
Prelude 12:02:09.797 < 1s < 1s < 1s < 1s

Table 7.11.: Maximum number of processable events

IOIDS Prelude
Run Time Events / Post- Lost Post- Lost

number gap 2 mins process process
1 10s 12 1 min 0 0s 0
2 5s 24 3 min 0 0s 0
3 2s 60 12.5 min 0 0s 0
4 1s 120 - - 0s 0
5 0.5s 240 - - 0s 126
6 0.5s 240 - - 0s 126

Table 7.12.: Packet size implications of approaches

IOIDS Prelude IDS
Single Event 15.900 Bytes 1.900 Bytes

Chapter 7. Experiment and Analysis 241

Conclusion The evaluation of the results for this step brings to light a big difference between
the two approaches. The only thing the two of them have in common is the confidentiality
for the exchanged information as capturing and analysing network traffic from neither of the
approaches can reveal any useful information.

In the view of distribution speed, Prelude IDS can prove significant superiority due to its
direct connection between several managers and the slim architecture with a single component
on each side only. The only down-side can be seen in the dropping of messages ones it is put
under very high load. IOIDS comprises of a totally different architecture and has to insert
each event into its database first of all, and pick it up using a trigger afterwards before it can be
passed on to the next node. Several components are involved in this process and employment
of wrapping, compressing and encryption technologies in several of these layers slow down
the overall process significantly. It can be concluded that the two approaches are prepared
to handle different deployment scenarios: Prelude IDS is performing very good results by
passing around event information inside organisations due to its persistent communication
link between managers and the promptness, events are passed on to the next manager. IOIDS,
in contrast, reestablishes a communication channel any time information shall be passed on.
Much more attention is drawn to trust issues than the contemporary delivery of knowledge.

Overall conclusions Stage 3

Merging together the results from the last stage of the experiment and mirroring them against
the objectives, as laid down in chapter 3, the following statements can be made concerning
the overall performance of IOIDS with all its components:

• The central issue of delivering IDS event data within communities and under certain
aspects across community domains could be satisfied completely by IOIDS.

• Strong authentication and encryption mechanisms together with a policy based ac-
cess control approach within IOIDS guarantee protection of knowledge and sharing of
knowledge with trusted parties only.

• The XML formatted IOIDS data engine policy files allow a very easy and straight-
forward way of configuring the IOIDS behaviour.

• The major issue of availability in the sense of total avoidance of single points of failure
could be satisfied as it was shown that taking down single components does not impact
the overall performance of IOIDS.

Chapter 7. Experiment and Analysis 242

• IOIDS has turned out to be a very structured approach for classifying information
on the one hand and making decisions about distribution on the other. These two
responsibilities can be broken down into their parts, which allows direct employment
of available policies.

• Correlation of information so far is performed by integrating event information from
many locations into a single database. The actual process of correlation is left to
further analysis tools, which would insert novel information chunks, gained from this
correlation, into the database, in order to get it redistributed by IOIDS.

• The reporting bit for IOIDS has been excluded from the implementation itself since
there is loads of research ongoing, dealing with visualisation of information, available
inside the SoapSy database.

• IOIDS does not directly integrate with other IT security relevant approaches out there
to date. However, the research for it has been carried out in close contact with related
projects within the research group, which are all together looking to bring up a solution
for intrusion detection systems, which is able to gather, store, distribute, integrate,
analyse and visualise intrusion detection system event data in an intelligent and efficient
manner.

• The distribution of knowledge in realtime cannot be satisfied by IOIDS. We cannot even
call its behaviour near realtime; especially when put under high load. Other approaches
such as Prelude IDS proved that quick distribution is possible in general; consequently,
for a proper (and not proof-of-concept) implementation certain parts of the architecture
would need to be redesigned.

It is believed that with the experiments carried out in the laboratory environment a great
set of real-world scenarios could be simulated. Besides the time constraints, which were set for
the project, the IOIDS implementation seems to satisfy the needs laid down in the objectives
earlier on.

More information has been provided in the feature comparison when evaluating IOIDS
against a number of similar or related approaches in the DIDS context. Overall conclusions,
that can be drawn from all the results given within this chapter are drawn in the following
section.

Chapter 7. Experiment and Analysis 243

7.4. Evaluation of results and overall analysis

The results gained from the experiments and the evaluation of available documentation has
shown that the IOIDS approach is able to satisfy the objectives laid down beforehand and,
this way, proves the hypothesis. In detail, the outcome of the analysis can be described as
follows:

• By using G4DS the approach communicates in a very secure and reliable manner with
strong authentication and integrity measures in place. Total avoidance of single-points-
of-failure provides a very high availability of the overall platform.

• A policy based access control mechanism is able to satisfy authorisation issues in a
reliable and easy to configure way.

• The peer-based infrastructure of IOIDS and its employment of public-key-infrastructure
technologies makes it resistant against a common set of well-known attack pattern.

• Decisions on data distribution and data integration are entirely left to the local node
and are based on easy to configure rules, which have to be defined in XML encoded
policy files.

• The completeness of components of the approach ensures consistence and integrity of
data; meaning that data for the same event is always represented in exactly the same
way in two different locations on the one hand and that no single piece of data is existent
twice in the same form on the other hand.

Moreover, the following conclusions can be drawn from direct comparison of IOIDS with
related approaches:

• IOIDS introduces a very clear and sober concept for classifying knowledge and distribute
it under certain protection rules.

• In the feature category intrusion detection the only approach besides IOIDS satisfying
all requirements is Prelude IDS, majorly due to its framework approach with plenty of
integration facilities as carried out for IOIDS as well. The remaining approaches lack in
features either because of focussing on a single set of detection mechanisms or missing
integration facilities.

• Not a single approach from the list of chosen representatives is able to satisfy all issues
in the category distribution. As half of the approaches even IOIDS itself does not cope

Chapter 7. Experiment and Analysis 244

with realtime issues. Major drawbacks of other approaches are the lack of flexibility for
the arrangement of nodes and the lack of trust relationships in the end.

• In terms of security and availability the approaches differ significantly due to their
nature as well as there age. Recent approaches do employ PKI technologies and can,
consequently, cover many of the issues arising in this category. Further problems are
often based on centralised approaches and lack of authorisation features.

• For the category extensibility IOIDS is again the only approach satisfying the entire
list of issues. Unaddressed issues for the other approaches were lack of integration with
central management systems or minor objectives like modularity and applicability in
heterogeneous environments.

• The IOIDS infrastructure is not prepared to hit the requirements regarding real-time
issues. Several reasons for this drawback have been presented within this chapter; it
became clear that certain components of the IOIDS approach need redesign for coping
with these issues.

Issues around the intrusion detection focus such as further correlation and deep analysis
of event data using data mining technologies or visualisation are not directly addressed by
IOIDS; however, its integration with the SoapSy approach enables benefiting from all the
research going on within the research group around this data repository.

After all, there is no such approach available, taking trust issues seriously into account.
All the compared approaches are more or less focussing on data integration and data nor-
malisation issues instead. This work has not yet been addressed by any approach out there
to date.

7.5. Conclusion

In the introduction of this thesis the hypothesis has been laid down as statement that intrusion
detection audit data may be exchanged across organisational boundaries in a secure and non-
reputable manner, while maintaining commercial confidentiality. The objectives for such an
approach have been discussed in very detail in chapter 3. Following this the definition of the
experiment provided a first overview about the approach that has been put into place and,
as well, about how an experiment can be able to prove the given hypothesis. After all the
technical information about the major components G4DS and IOIDS in chapters 5 and 6, this
chapter has discussed in very detail, how the before defined experiment has been executed
and what conclusions could be drawn from the results.

Chapter 7. Experiment and Analysis 245

The results combined from the feature comparison on the one hand and the practical
experiments in the laboratory environment on the other hand have shown that IOIDS is
capable of satisfying all the predefined objectives excluding the realtime-issue, which has
been discussed in very detail within this chapter. Not only it was shown that IOIDS is able
to fullfill the complete list of requirements, but also that it distinguishes itself from up-to-date
approaches within the distributed intrusion detection system context by showing that each
of them is lacking several of the defined features and, consequently, IOIDS can clearly make
a contribution with its novel approach of knowledge sharing based on trust-relationships.

After the analysis of all the results and the mirroring against the requirements from the
experiment definition the IOIDS system has finally been discussed in its design, architecture,
implementation and usefulness. An overall conclusion in the upcoming chapter is summarising
the information from all the available chapters and puts the achieved results back into the
overall context of firstly distributed intrusion detection, and secondly information security in
general.

Chapter 8.

Conclusions

The Inter-Organisational Intrusion Detection System infrastructure, as presented in this the-
sis, has proved that the exchange of intrusion detection audit data between organisations
may be carried out in a secure and reliable manner while maintaining trust and commercial
confidentiality.

A literature review has clearly presented the state of the art in intrusion detection tech-
nology and could identify the lack of such an approach in toady’s information security envi-
ronment. It could also be shown, that there is a requirement for the exchange of intrusion
detection audit data on a high level across organisational boundaries as the currently avail-
able approaches require a significant amount of manual intervention and are, this way, not
adequate to challenge nowadays threads in the information society.

The requirements and aims have been researched for IOIDS in the first place and a lot of
knowledge from related or similar approaches within the DIDS as well as grid context could
be reused. Objectives have been defined in detail in order to draw a picture of the desired
project outcome.

8.1. Achievements

Objectives were broken down into low-level issues and, this way, an experiment could be
defined, which basically described the way the IOIDS project could be evaluated against the
aforementioned objectives. The outcome of this process was the following results:

• A detailed analysis plan was created, containing both a theoretical analysis using doc-
umentation of similar approaches and a practical part to be carried out in a laboratory
environment. Both were made to examine the behaviour in comparison to other projects
and to analyse, whether the previous defined objectives could be met.

• A high-level overview of the design, consisting of the four major components: Grid for

246

Chapter 8. Conclusions 247

Digital Security (G4DS), Inter-Organisational Intrusion Detection System (IOIDS) ap-
plication, Intrusion Detection System Integration Modules (IDS-IM) and the connected
third-party Intrusion Detection Systems.

• A complete documentation for the design, architecture and implementation for the
subjacent communication platform Grid for Digital Security (G4DS).

• A complete documentation for the design, architecture and implementation for the
Inter-Organisational Intrusion Detection System application including all information
for integration with third-party event generators such as intrusion detection systems,
in detail for the network intrusion detection system Snort.

• A detailed documentation of the execution of the experiment, containing both:

– The description of the comparison process for the theoretical experiment includ-
ing the introduction of all representatives and the broken-down features. The
attributes of each representative were mirrored against the set of requirements
and a comparison was carried out in the end by using these results.

– The execution of the practical experiment has been documented in two levels of
detail; on the one hand an overview is given with results as part of the analysis
process, on the other hand a detailed protocol is provided in the appendix in order
to provide all technical information in order to rerun the experiments. Results have
been documented whenever appropriate. The practical experiment was broken
down into three stages in order to allow evaluation of the different components
and structure the evaluation process.

With the analysis of the results in chapter 7 it could be shown that the Inter-Organisational
Intrusion Detection System approach is superior to all available approaches concerning the
requirements laid down for the project. The combination of the secure and reliable com-
munication platform G4DS and the highly configurable and integrable Inter-Organisational
Intrusion Detection System application provides an architecture for exchange of intrusion
detection system audit data, which can be trusted by the parties because all the responsibil-
ity is strictly kept to the local node. Strong authentication and authorisation mechanisms
ensure the security of information including all its features namely confidentiality, integrity
and non-repudiation. Detailed results of the analysis process are presented in section 7.4.

Chapter 8. Conclusions 248

8.1.1. Contribution to Science

There has not been published any approach or idea to date, which is addressing the exchange
of intrusion detection audit data across organisational boundaries in a secure and reliable
manner with putting major focus on the trust relationships between the involved parties.
Loads of efforts have been put on structuring, generalising and normalising the audit data -
the process of sharing, however, has not been addressed yet.

In detail, the following points describe the contribution in more detail:

• A peer-to-peer based communication infrastructure secured by use of public key infras-
tructure technology provides the base for protection of data.

• The introduction of trust relationships between parties and their implementation by
use of trusting communities allows members to map real-world relationships into the
system.

• Strict distribution of all functionality with total avoidance of single points of failure
keeps the responsibility on the local node and, this way, enables members to trust the
system.

• Implementation of plug-in mechanisms for third-party event generators opens the sys-
tem for integration with any kind of audit data generating applications.

The academic society has also acknowledged the novelty of the Inter-Organisational In-
trusion Detection System. Each of the following documents contains partial outcomes of
the project; they have been peer-reviewed by the academic society and published in either
journals or conference proceedings during the project lifetime:

• Inter-Organisational Intrusion Detection using Knowledge Grid Technology, Michael
Pilgermann, Andrew Blyth, Stilianos Vidalis; Journal of Information Management and
Computer Security, Volume 14, Number 4, 2006, ISSN: 0968-5227

• Security in Heterogeneous Large Scale Environments Using GRID Technology, Michael
Pilgermann, Stilianos Vidalis, Evangelos Morakis, Andrew Blyth; International Journal
for Innovative Computing, Information and Control (IJICIC), Volume 1, Number 4,
December 2005; ISSN 1349-4198

• GRID for Digital Security (G4DS), Stilianos Vidalis, Michael Pilgermann, Evangelos
Morakis, Andrew Blyth; Journal of Maintenance Problems, 2(56), Instytut Technologii
Eksploatacji - Panstwowy Instytut Badawczy, Poland, 2005, ISSN 1232-9312

Chapter 8. Conclusions 249

• Anonymizing data in a Peer-To-Peer based Distributed Intrusion Detection System,
Michael Pilgermann, Andrew Blyth; Paper for the ECIW 2004: The 3rd European
conference on information warfare and security, 2004, ISBN: 0-9547096-2-4

8.2. IOIDS in information security

IOIDS can contribute significantly to the overall information security infrastructure. As
it is not coming as an isolated solution but rather as a feature sitting on top of existing
intrusion detection system facilities, it can integrate very well with available deployments.
The additional knowledge, it can gain from other sides, enables the humans as well as the
technology to improve and accelerate decision making based on a wider view of information.

8.3. Limitations and future work

As presented in the analysis of the experiment results (see section 7.4), the Inter-Organisational
Intrusion Detection System was able to address the entire set of requirements but the real-
time issue. However, during the project lifetime certain issues were raised, which could carry
on the project or establish new related projects.

The following list presents a collection of potential projects that could take the outcome
of the IOIDS project further:

• As mentioned several times, IOIDS with its proof-of-concept design and implementation
was not able to address the real-time objective. Further research could investigate the
bottle necks of the architecture and apply changes to design and implementation in
order to overcome these problems. There might also be the option that wide-scale
distribution of this kind of information cannot be carried out in realtime by nature due
to the involved correlation, distribution and integration processes.

• In the current design, access control for G4DS is only implemented in two dimensions;
meaning that it is worked out by the access control engine what actions which member
is allowed on which targets by processing the rules. A perfectly sober design should
extend that to the question of what member currently assigned to which community is
allowed to carry out which operation on which target.

• The concept of anonymising and sanitising has been introduced in the chapter for Grid
for Digital Security (chapter 5). The design and access control is prepared to handle
these features in general; the architecture and implementation, however, do not include
these features in the current stage.

Chapter 8. Conclusions 250

• In the current stage there is a need to implement an IOIDS extension for every third-
party application that shall be integrated with IOIDS; mainly in order to understand the
extension information for this third-party event generator within the SoapSy database.
In order to operate the SoapSy database, however, an XML document has to be pro-
vided, describing exactly this extension information. Theoretically, it should be possible
for IOIDS to pick up all the information from this XML description and integrate new
third-party applications dynamically.

• The Inter-Organisational Intrusion Detection System has only been deployed in the
laboratory environment for the experiments for this project. Interesting results could
be gained from wide-scale and longer-term deployments of IOIDS components, which
share this information over the Internet instead of the simulation within a local area
network.

Appendix A.

References

R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A. Frohner, A. Gianoli, K. Lorentey,
and F. Spataro. Voms: an authorization system for virtual organizations. In 1st European
Across Grids Conference, Santiago de Compostela, 2003.

J. P. Anderson. Computer security threat monitoring and surveillance, 1980.

G. Angelis, S. Gritzalis, and C. Lambrinoudakis. Adressing authentication and authorization
issues in the grid. Technical report, University of the Aegon, Department of Information
and Communications Systems Engineering, 2001.

B. Atkinson, G. Della-Libera, S. Hada, M. Hondo, P. Hallam-Baker, J. Klein, B. LaMacchia,
P. Leach, J. Manferdelli, H. Maruyama, A. Nadalin, N. Nagaratnam, H. Prafullchandra,
J. Shewchuk, and D. Simon. Web services security (ws-security) - version 1.0, April 2002.

N. Avourdiadis and A. Blyth. Soapsy - unifying security data from various heterogeneous
distribute systems into a single database architecture. The Journal of Information System
Security (JISSec), 1(2), 2005a.

N. Avourdiadis and A. Blyth. Data unification and data fusion of intrusion detection logs
in a network centric environment. In A. Blyth, editor, Proceedings of the First European
Conference on Network Defence (EC2ND), volume 1, December 2005b.

J. S. Balasubramaniyan, J. O. Garcia-Fernandez, D. Isacoff, E. Spafford, and D. Zamboni.
An architecture for intrusion detection using autonomous agents. ACSAC, 1998.

J. Barrus and N. C. Rowe. A distributed autonomous-agent network-intrusion detection and
response system. In Command and Control Research and Technology Symposium, Monterey
CA, June-July 1998.

K. Begain, G. Bolch, and H. Herold. Practical Performance Modeling. Application of the
MOSEL Language. Kluwer Academic Publishers, 2001.

D. E. Bell and L. J. LaPadula. Secure computer system: Unified exposition and multics
interpretation. Tech. report mtr-2997, The MITRE Corporation, Bedford, MA, July 1975.

S. Bellovin, J. Schiller, and C. Kaufman. Rfc 3631: Security mechanisms for the internet,
December 2003.

251

Appendix A. References 252

A. Blyth. An xml-based architecture to perform data integration and data unification in
vulnerability assessments. Information Security, 8(4):14–25, 2003.

D. Box, G. Kakivaya, A. Layman, S. Thatte, and D. Winer. Soap: Simple object access
protocol, 2000.

D. Box, E. Christensen, F. Curbera, D. Ferguson, J. Frey, M. Hadley, C. Kaler, D. Langwor-
thy, F. Leymann, B. Lovering, S. Lucco, S. Millet, N. Mukhi, M. Nottingham, D. Orchard,
J. Shewchuk, E. Sindambiwe, T. Storey, S. Weerawarana, and S. Winkler. Web services
addressing (ws-addressing), August 2004.

J. Brentano, S. R. Snapp, G. V. Dias, T. L. Goan, L. T. Heberlein, C.-l. Ho, K. N. Levitt,
B. Mukherjee, and S. E. Smaha. An architecture for a distributed intrusion detection
system. In 14th Department of Energy - Computer Security Group Conference, pages 25–
45, Concord, California, 1991.

D. F. Brewer and M. J. Nash. The chinese wall security policy. In IEEE Symposium On
Research In Security And Privacy, pages 206–214, OAKLAND, CALIFORNIA, 1989.

P. Brittenham. An overview of the web services inspection language, June 2002.

M. Bubak, P. Nowakowski, and R. Pajak. An overview of european grid projects. In European
Across Grids Conference 2003, pages 299–308, 2003.

M. Cannataro and D. Talia. The knowledge grid. Communications of the ACM, 46(1):89–93,
2003.

C. C. Center. Snort xml output plugin - simple network markup language (snml). Website,
2003. URL http://www.cert.org/kb/snortxml/.

CERIAS. Autonomous agents for intrusion detection. Website, 2000. URL http://www.
cerias.purdue.edu/about/history/coast/projects/aafid.php.

Cert/CC. Aircert. Website, 2006. URL http://aircert.sourceforge.net/.

Cert/CC. Cert / coordination center. Website, 2004. URL http://www.cert.org/.

D. Chadwick. An x.509 role based privilege management infrastructure. Technical report,
October 2001, ISBN: 1-903150-52-3.

S. J. Chapin, D. Katramatos, J. Karpovich, and A. Grimshaw. Resource management in
legion. Future Generation Computer Systems, 15(5-6):583 – 594, 1999.

D. Chaum. The dining cryptographers problem: Unconditional sender and recipient untrace-
ability. Journal of Cryptology, 1:65–75, 1988.

D. L. Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. In
R. Rivest, editor, Communications of the ACM, 1981.

Appendix A. References 253

S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt, J. Rowe, S. Staniford-
Chen, R. Yip, and D. Zerkle. The design of grids: A graph-based intrusion detection
system, 1999.

R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana. Web services description language
(wsdl) version 2.0 part 1: Core language. Internet Draft, March 2006. URL http://www.
w3.org/TR/2006/CR-wsdl20-20060327.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services description
language (wsdl) 1.1, March 2001.

I. Clarke, S. G. Miller, T. W. Hong, O. Sandberg, and B. Wiley. Protecting free expression
online with freenet, 2002.

L. Cottrell. Mixmaster & remailer attacks, 1995.

M. Crosbie and G. Spafford. Defending a computer system using autonomous agents. In 8th
National Information Systems Security Conference, 1994.

M. Crosbie and G. Spafford. Active defense of a computer system using autonomous agents,
15. Feb. 1995 1995.

D. Curry, H. Debar, and M. Lynch. Intrusion detection message exchange format data model
and extensible markup language (xml) document type definition, 2002.

CVE. Common vulnerabilities and exposes (http://www.cve.mitre.org), 2004.

K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for
distributed resource sharing. Proceedings of the Tenth IEEE International Symposium on
High-Performance Distributed Computing (HPDC-10), pages 181–193, 2001.

K. Czajkowski, D. Ferguson, I. Foster, J. Frey, S. Graham, T. Maguire, D. Snelling, and
S. Tuecke. From open grid services infrastructure to ws-resource framework: Refactoring
& evaluation, February 2004a.

K. Czajkowski, D. F. Ferguson, I. Foster, J. Frey, S. Graham, I. Sedukhin, D. Snelling,
S. Tuecke, and W. Vambenepe. The ws-resource framework, March 2004b.

T. E. Daniels. A functional reference model of passive systems for tracing network traffic.
Digital Investigation - The International Journal of Digital Forensics & Incident Response,
1:69–81, 2003.

R. Danyliw. Analysis console for intrusion databases. Website, 2006. URL http://acidlab.
sourceforge.net/.

R. Danyliw, S. Levy, B. Trammell, and A. Kompanek. Aircert: The definitive guide, 2003.

R. Danyliw, J. Meijer, and Y. Demchenko. The incident object description exchange format
data model and xml implementation. Internet-Draft, June 2006. URL http://www.ietf.
org/internet-drafts/draft-ietf-inch-iodef-07.txt.

Appendix A. References 254

D. Davies, E. Holler, E. Jensen, S. Kimbleton, B. Lampson, G. LeLann, K. Thurber, and
R. Watson. Distributed Systems-Architecture and Implementation: An Advanced Course.
Lecture Notes in Computer Science. Springer Verlag Berlin / Heidelberg / New York, New
York, 1981.

H. Debar, D. Curry, and B. Feinstein. The intrusion detection message exchange format
(idmef). Internet-Draft, January 2005. URL http://www.ietf.org/internet-drafts/
draft-ietf-idwg-idmef-xml-14.txt.

H. Debar, D. Curry, and B. Feinstein. The intrusion detection message exchange format
draft-ietf-idwg-idmef-xml-16. Draft for RFC, 2006.

Y. Demchenko. Incident object description and exchange format requirements, 2003.

D. Denning. An intrusion detection model. IEEE Trans. on Software Engineering, SE-13(2),
1987.

T. Dierks and C. Allen. Rfc 2246: The tls protocol version 1.0, 1999.

T. Dierks and E. Rescorla. Rfc 4346 - the transport layer security (tls) protocol, version 1.1.
Request for Comments, April 2006. URL http://www.faqs.org/rfcs/rfc4346.html.

W. Diffie and M. E. Hellman. New directions in cryptography. IEEE Transactions on
Information Theory, IT-22:644–654, 1976.

M. Dikaiakos, Y. Ioannidis, and R. Sakellariou. Search engines for the grid: A research agenda.
In 1st European Across Grids Conference, Universidad de Santiago de Compostela, Spain,
2003.

C. U. Dnad. On the feasibility of distributed intrusion detection. White Paper, 2004.

R. Dobson. Doing xml with t-sql. Internet, July 2004. URL http://msdn.microsoft.com/
xml/default.aspx?pull=/library/en-us/dnsqlpro04/html/sp04g1.asp.

J. R. Douceur. The sybil attack. In 1st International Workshop on Peer-to-Peer Systems
(IPTPS ’02), MIT Faculty Club, Cambridge, MA, USA, 2001. Microsoft Research.

R. Favali and S. Stuart. Grid and web services standards to converge, 2004.

B. Feinstein, G. Matthews, and J. White. The intrusion detection exchange protocol (idxp),
October 2002.

G. Fellows. Peer-to-peer networking issues - an overview. Digital Investigation - The Inter-
national Journal of Digital Forensics & Incident Response, 1:3–6, 2004.

I. Foster. What is the grid? a three point checklist, 2003.

I. Foster, C. Kesselmann, G. Tsudik, and S. Tuecke. A security architecture for computational
grids. In 5th ACM Conference on Computer and Communications Security Conference,
pages 82–92, 1998.

Appendix A. References 255

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual
organizations, 2001.

I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The physiology of the grid: An open grid
services architecture for distributed systems integration, 2002.

I. Foster, D. Berry, A. Djaoui, A. Grimshaw, B. Horn, H. Kishimoto, F. Maciel, A. Savva,
F. Siebenlist, R. Subramaniam, J. Treadwell, and J. V. Reich. The open grid services
architecture, version 1.0, July 2004a.

I. Foster, J. Frey, S. Graham, S. Tuecke, K. Czajkowski, D. Ferguson, F. Leymann, M. Nally,
I. Sedukhin, D. Snelling, T. Storey, W. Vambenepe, and S. Weerawarana. Modeling stateful
resources with web services, March 2004b.

M. J. Freedman and R. Morris. Tarzan: A peer-to-peer anonymizing network layer. In ACM
Conference on Computer and Communications Security (ACM CCS 9), Washington, DC,
USA, 2002.

M. J. Freedman, E. Sit, J. Cates, and R. Morris. Introducing tarzan, a peer-to-peer anonymiz-
ing network layer. In 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02),
pages 1–6, MIT Faculty Club, Cambridge, MA, USA, 2001. MIT Laboratory for Computer
Science.

Y. Fyodor. Snortnet - a distributed intrusion detection system, 2000.

D. Gannon, K. Chiu, M. Govindaraju, and A. Slominski. An analysis of the open grid services
architecture, 2002.

I. Goldberg. A Pseudonymous Communications Infrastructure for the Internet. Phd thesis,
UC Berkeley, 2000.

S. Goldwasser. New directions in cryptography: twenty some years later. Proc. of 38th FOCS,
pages 314–324, 1997.

P. Golle and M. Jakobsson. Reusable anonymous return channels. In Workshop on Privacy
in the Electronic Society (WPES 2003), Washington, DC, USA, 2003.

P. Graham, M. Heikkurinen, J. Nabrzyski, A. Oleksiak, M. Parsons, H. Stockinger,
K. Stockinger, M. Stroiski, and J. Aglarz. Eu funded grid development in europe. In
2nd EUROPEAN ACROSS GRIDS CONFERENCE, Nicosia, Cyprus, 2004.

GRIDSTART. Gridstart - technical newsletter - issue 1, November 2002.

GRIDSTART. Gridstart - technical newsletter - issue 2, March 2003.

J. R. Groff and P. N. Weinberg. SQL: The Complete Reference. McGraw-Hill, 1999.

D. Gupta, T. C. Buchheim, B. S. Feinstein, G. A. Matthews, and R. A. Pollock. Iap: Intrusion
alert protocol, 2001.

Appendix A. References 256

S.-J. Han and S.-B. Cho. Detecting intrusion with rule-based integration of multiple models.
Computers & Security, 22(7):613–623, 2003.

L. T. Heberlein, B. Mukherjee, K. Levitt, and G. Dias. Towards detecting intrusions in a net-
worked environment. In 14th Department of Energy Computer Security Group Conference,
1991.

L. T. Heberlein, B. Mukherjee, and K. N. Levitt. Internetwork security monitor: An intrusion-
detection for large-scale networks. In 15th National Computer Security Conference, vol-
ume 1, pages 262–271, Baltimore, MD, 1992.

T. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J. Wood, and D. Wobler. A network security
monitor. In IEEE Symposium on Research in Computer Security and Privacy, pages 296–
304, 1990.

C. L. Hedrick. Rfc 1058: Routing information protocol, 1988.

P. Hodson. Local Area Networks. Continium, London, 2003.

InvisibleNet. Invisible internet project (i2p), August 2003.

IT-ISAC. It information sharing and analysis center (it-isac), 2005.

P. Keleher, B. Bhattacharjee, and B. Silaghi. Are virtualized overlay networks too much of
a good thing? In 1st International Workshop on Peer-to-Peer Systems (IPTPS ’02), MIT
Faculty Club, Cambridge, MA, USA, 2002.

R. Kolluru and P. H. Meredith. Security and trust management in supply chains. Information
Management & Computer Security, 9(5):233 – 236, 2001.

W. Lee, R. A. Nimbalkar, K. K. Yee, S. B. Patil, P. H. Desai, T. T. Tran, and S. J. Stolfo.
A data mining and cidf based approach for detecting novel and distributed intrusions. In
H. Debar, L. Me, and S. F. Wu, editors, Recent Advantages in Intrusion Detection, pages
49–65, Toulouse, France, 2000. Department of Computer Science (North Caroline State
University), Department of Computer Science (Columbia University).

D. Liesen. Requirements for enterprise-wide scaling intrusion detection products. White
Paper, June 2002.

C. Lonvick. Request for comments: 3164 - the bsd syslog protocol. Internet Draft, August
2001. URL ftp://ftp.rfc-editor.org/in-%notes/rfc3164.txt.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in unstructured
peer-to-peer networks. In 16th international conference on Supercomputing, Columbia Uni-
versity, New York City, USA, 2002.

J. Mana. Investigate Data Mining for Security and Criminal Detection. 2003.

Appendix A. References 257

J. McLean. A comment on the ‘basic security theorem’ of bell and lapadula. Information
Processing Letters, 20(2):67–70, 1985.

R. Merkle. Secure communications over insecure channels. Communications of the ACM, 21
(4):294–299, 1978.

S. Micali. Fair public-key cryptosystem. Advances in Cryptology, Proc. of Crypto ’92, LNCS
740:113–138, 1992.

E. Miller. An introduction to the resource description framework. D-Lib Magazine, May
1998.

D. Moore and J. Hebeler. Peer-to-Peer - Building Secure, Scalable and Manageable Networks.
McGraw-Hill, Osborne, 2002.

E. Morakis, S. Vidalis, and A. Blyth. A framework for representing and analysing cyber
attacks using object oriented hierarchy trees. In The 2nd European Conference On Infor-
mation Warfare And Security (ECIW), Reading, UK, 2003.

B. Mukherjee, L. Heberlein, and K. Levitt. Network intrusion detection. IEEE Network,
pages 26–41, 1994.

N. Nagaratnam, P. Janson, J. Dayka, A. Nadalin, F. Siebenlist, V. Welch, I. Foster, and
S. Tuecke. The security architecture for open grid services, July 2002.

Netfilter. Netfilter / iptables. Website, 2005. URL http://www.netfilter.org/.

Netscape. Ssl 3.0 specification, November 1996.

E. Newcomer. Understanding Web Services- XML, WSDL, SOAP and UDDI. Independant
Technology Guides, 1 edition, May 2002.

NSS. Gigabit intrusion detection systems - group test edition 1. Technical report, NSS Group,
December 2002.

NSS. Public key infrastructure (pki) - group test (edition 6). Group test, NSS Group, 2004.

NSS. Internet security - ”the modern day gold rush”, 2005.

W. Ogata, K. Kurosawa, K. Sako, and K. Takatani. Fault tolerant anonymous channel. In
Information and Communications Security — First International Conference, pages 440–
444, 1997.

V. Parmar, H. Shi, and S.-S. Chen. Xml access control for semantically related xml doc-
uments. In Proceedings of the 36th Annual Hawaii International Conference on System
Sciences (HICSS’03), volume 9, page 288.2. IEEE Computer Society Washington, DC,
USA, 2003.

A. Pfitzmann and M. Waidner. Networks without user observability. Computers and Security,
6(2):158–166, 1987.

Appendix A. References 258

C. P. Pfleeger and S. L. Pfleeger. Security in Computing. Prentice Hall Professional Technical
Reference, New Jersey, 3 edition, 2003.

M. Pilgermann. Absicherung von Netzen mit Hilfe von Intrusion Detection / Intrusion Pre-
vention Systemen - Resistenz gegen Anti-IDS-Angriffe. diploma thesis, University of Ap-
plied Scienes and Arts Hannover, 2003.

M. Pilgermann and A. Blyth. Anonymizing data in a peer-to-peer based distributed intrusion
detection system - a possible approach. In A. Jones and D. Remenyi, editors, European
Conference on Information Warfare (ECIW) 2004, London, 2004, ISBN: 0-9547096-2-4.

D. M. Piscitello and A. L. Chapin. Open Systems Networking: TCP/IP and OSI. Addison-
Wesley Longman Publishing Co., Inc., 1993.

S. Pohlig and M. Hellman. An improved algorithm for computing logarithms over gf(p)
and its cryptographic significance. IEEE Transactions on Information Theor, IT-24(1):
106–110, 1978.

J. Postel. Domain name system structure and delegation. RFC, March 1994. URL http:
//www.isi.edu/in-%notes/rfc1591.txt.

Prelude. Prelude-ids - the hybrid ids framework. Website. URL http://www.prelude-ids.
org/.

L. Quin. Open Source XML Databases Toolkit - Resources and Techniques for Improved
Development. Wiley Computer Publishing, 2000.

X. Quin and W. Lee. Statistical causality analysis of infosec alert data. In Recent Advances
in Intrusion Detection (RAID) 2003, pages 73–93, Pittsburgh, PA, USA, 2003.

J. F. Rafael Paez, Cristina Satizabal. A virtual intrusion detection system (vids) for virtual
organizations. expected, 2006.

E. T. Ray. Learning XML. O’Reilly, 1 edition, January 2001.

M. Rennhard, S. Rafaeli, and L. Mathy. The pseudonymity network architecture. Technical
report, Swiss Federal Institute of Technology, Computer Engineering and Networks Labo-
ratory; Zurich, Switzerland; Lancaster University, Faculty of Applied Sciences; Lancaster,
UK, February 2001a.

M. Rennhard, S. Rafaeli, L. Mathy, B. Plattner, and D. Hutchison. An architecture for an
anonymity network. In IEEE 10th Intl. Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WET ICE 2001), 2001b.

M. Y. Rhee. Internet Security - Cryptographic principles, algorithms and protocols. John
Wiley & Sons Ltd, The Atrium, Chichester, West Sussex, England, 2003.

Appendix A. References 259

R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining digital signatures and
public-key cryptosystems and public-key cryptosystems. Communications of the ACM, 21
(2):120–126, 1978.

M. Rose. The blocks extensible exchange protocol core, 2001.

K. Scribner and M. C. Stiver. Understanding SOAP. Sams Publishing, 1 edition, 2000.

S. Seely. SOAP - Cross Plattform Web Service Development Using XML. Prentice-Hall, New
Jersey, USA, 2003.

A. Serjantov. Anonymizing censorship resistant systems. In 1st International Workshop
on Peer-to-Peer Systems (IPTPS ’02), MIT Faculty Club, Cambridge, MA, USA, 2002.
University of Cambridge Computer Laboratory.

SETI. Seti at home, 2005. URL http://setiathome.berkeley.edu/.

A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.

S. Snapp, J. Brentano, G. Dias, T. Goan, L. Heberlein, C. Ho, K. Levitt, and B. Mukherjee.
A system for distributed intrusion detection. In COMPCON Spring ’91, pages 170–176,
San Francisco, 1991a.

S. R. Snapp, J. Brentano, G. V. Dias, T. L. Goan, L. T. Heberlein, C.-L. Ho, K. N. Levitt,
B. Mukherjee, S. E. Smaha, T. Grance, D. M. Teal, and D. Mansur. Dids (distributed intru-
sion detection system) motivation, architecture, and an early prototype. In 14th National
Computer Security Conference, volume 1, pages 167–176, Washington, D.C., 1991b.

Snort. Snort - the de-facto standard for intrusion detection. Internet site, 2006. URL
http://www.snort.org/.

E. H. Spafford and D. Zamboni. Intrusion detection using autonomous agents. Computer
Networks: The International Journal of Computer and Telecommunications Networking,
34(4):547 – 570, October 2000. URL http://portal.acm.org/citation.cfm?id=361120.

S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank, J. Hoagland, K. Levitt,
C. Wee, R. Yip, and D. Zerkle. Grids - a graph-based intrusion detection system for large
networks. In 19th National Information Systems Security Conference, 1996.

W. R. Stevens. TCP/IP Illustrated, Volume 1: The Protocols. Addison-Wesley, 1994.

M. Strembeck. A role engineering tool for role-based access control. In Proc. of the Symposium
on Requirements Engineering for Information Security (SREIS), Paris, France, August
2005.

D. Talia. Enabling knowledge discovery services on grids. In 2nd EUROPEAN ACROSS
GRIDS CONFERENCE, Nicosia, Cyprus, 2004.

Appendix A. References 260

ThePreludeTeam. Prelude 0.9 handbook. Documentation, 2006. URL https://trac.
prelude-ids.org/wiki/PreludeHandbook.

M. Tolba, I. Taha, and A. A. Shishtawy. An intrusion detection architecture for computational
grids. In First International Conference ICICIS, June 2002.

M. Tolba, M. Abdel-Wahab, I. Taha, and A. Al-Shishtawy. Distributed intrusion detection
system for computational grids. In Second International Conference on Intelligent Com-
puting and Information Systems, March 2005a.

M. F. Tolba, M. S. Abdel-Wahab, I. A. Taha, and A. M. Al-Shishtawy. Gida: Toward
enabling grid intrusion detection systems. In 5th IEEE International Symposium on Cluster
Computing and the Grid, 2005b.

B. Trammell, R. Danyliw, S. Levy, and A. Kompanek. Aircert: The definitive guide. Doc-
umentation, 2005. URL http://aircert.sourceforge.net/docs/aircert manual-06
2005.pdf.

B. Traversat, A. Arora, M. Abdelaziz, M. Duigou, C. Haywood, J.-C. Hugly, E. Pouyoul, and
B. Yeager. Project jxta 2.0 super-peer virtual network, 2003.

TruSecure. Icsa labs ids consortium announces network intrusion detection system alert
specification format. Press Release, February 2004. URL http://www.trusecure.com/
company/press/pr 20040223.shtml.

S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maquire, T. Sand-
holm, D. Snelling, and P. Vanderbilt. Open grid services infrastructure - version 1.0, June
2003.

Y. Vandoorselaere, L. Oudot, and M. Schillinger. Prelude: an open source, hybrid intrusion
detection system - architecture guide, 2004.

S. Vidalis, E. Morakis, and A. Blyth. Security in heterogeneous large scale environments
using grid technology. Technical report, University of Glamorgan - School of Computing,
2003.

W3C. Xml schema specifications. Internet drafts, 2005. URL http://www.w3.org/XML/
Schema.html#dev.

W. W. W. C. (W3C). Document object model (dom). Internet site, 2005. URL http:
//www.w3.org/DOM/.

M. Waidner and B. Pfitzmann. The dining cryptographers in the disco: Unconditional
sender and recipient untraceability with computationally secure serviceability. Advances
in Cryptology EUROCRYPT 89, LNCS434, 1990.

D. S. Wallach. A survey of peer-to-peer security issues. 2001.

Appendix A. References 261

B. R. Waters, E. W. Felten, and A. Sahai. Receiver anonymity via incomparable public
keys. In ACM Conference on Computer and Communications Security, pages 112 – 121,
Washington D.C., USA, 2003.

V. Welch, F. Siebenlist, I. Foster, J. Bresnahan, K. Czajkowski, J. Gawor, C. Kessel-
man, S. Meder, L. Pearlman, and S. Tuecke. Security for grid services. In Twelfth In-
ternational Symposium on High Performance Distributed Computing (HPDC-12). IEEE
Press, June 2003. URL http://www.globus.org/alliance/publications/papers/
GT3-Security-HPDC.pdf.

G. White, E. Fisch, and U. Pooch. Cooperating security managers: a peer-based intrusion
detection system. Network, IEEE, 10(1):0890–8044, 1996.

Wikipedia. Bell-lapadula model. Internet Page, July 2006. URL http://en.wikipedia.
org/wiki/Bell-LaPadula.

G. R. Wright and W. R. Stevens. TCP/IP Illustrated, Volume 2 - The Implementation,
volume 2. Addison-Wesley Publishing Company, 1995.

K. Xynos. A soap-xml interface which will interpret sql commands for an ids database.
Master’s thesis, University of Glamorgan, September 2005.

Appendix B.

Details for experiment execution

262

Appendix B. Details for experiment execution 263

B.1. Execution Protocols

Within this section, detailed information is provided about the way, the experiments have
been carried out. I try to break down the whole process into single steps in order to enable
everybody to rerun the experiments. Due to the vast amount of log information, it was
impossible to attach them all to this document. Instead, a CD was created, which holds all
this information. References into this CD are made whenever appropriate.

The protocols have been ordered by the dates, they were carried out. Whereever useful,
the times have been provided as well; usually in order to simplify searching within log files
for certain time frames.

B.1.1. Stage 1

This subsection describes the steps, which have been carried out for experiment execution
stage 1 as defined in section 4.4.1. The analysis of this information is maintained in section
7.3.1 of the analysis chapter.

Firstly, the process of setting up the laboratory environment is shown. Afterwards, atten-
tion is drawn to the execution of the stage one experiment itself; broken down into its 4 steps,
namely:

1. Correct messages

2. Faulty distribution domains

3. Access Control evaluation

4. Penetration

Preparation

The following sections are a detailed collection of steps, which have been executed for the
experiment in the laboratory environment.

15/05/2006 – Setup of network nodes

• Setup of 6 personal computers with software as described in tables B.7 and B.8

• Applying of updates on those machines

• Installation of Python with required libraries (site-packages)

• Installation of PostgreSQL database management system on each machine

• Creation and configuration of database for g4ds use (details are shown in table
7.5)

• Apply SQL script create tables.sql on the newly created database for generating
required relations for the g4ds system.

16/05/2006 – Installation of g4ds application and its configuration

Appendix B. Details for experiment execution 264

• Configuration of each machine by following the following steps:

1. Unpack g4ds archive g4ds-0.1.tar.gz
2. Edit g4ds configuration file g4ds.conf and apply information for member id,

IP address information and database connectivity information (details are
provided in table 7.6).

3. (Only for M001 and M002): remove the own entry from list of member de-
scriptions to be loaded on installation start since the node itself is an authority

4. (Only for non Gentoo installations): Copy the python library output.py from
the thirdparty directory to the g4ds directory.

5. Distribute g4ds to the local system by running the python setup: python
setup.py install

6. Run the g4ds installation (distribute initial knowledge to the databases) by
executing python install.py from the g4ds directory (as a sample, a copy of
the corresponding output for running the given command on node M004 is
provided in Listing B.15).

7. Export the local member description to a file.

• After M001 and M002 had been created, the community description for the default
community C9999999999 could be manually updated and applied to all other
nodes.

• All member descriptions from all nodes have been applied to all other nodes.

• Configuration of communities and applying descriptions to the corresponding nodes
by performing the following steps (details for community configurations are given
in table 7.7):

1. Creation of community description file. (As a sample a copy of the community
description for community C001 is provided in listing B.16)

2. Apply community description to community authorities using g4ds maintain
environment. (In the first turn apply without gateway information as the
linked community is not yet known on the local node. Only if the link com-
munity is created first, the gateways may be processed.)

3. Apply community description to remaining members using g4ds maintain en-
vironment.

4. Subscribe the remaining members to the community using g4ds maintain en-
vironment by sending a request to one of the authorities.

5. Recalculate routing table for all members using maintain environemnt. ‘
6. Generate endpoints for the new community for each member using maintain

environment.
7. Generate, export and import member descriptions for all members using main-

tain environment.

• Configure and apply chat service on all nodes. (A copy of the source code for the
program is provided in listing B.17. A service description had to be created - a

Appendix B. Details for experiment execution 265

copy of this may be found in listing B.18.) For each node the following steps had
to be gone through:

1. A private/public key pair had to be created using the g4ds maintainence
environment.

2. The Service Description (SDL) file had to be applied using the g4ds main-
tainence environment for making the service known to G4DS.

3. The generated key had to be made accessable to the chat service program.

17/05/2006 – Finish of service installation, synchronise machines and start experiments

• The nodes had to subscribe to the service using the g4ds maintainence environment
(option 2).
As nodes M004 - M006 are located behind an NAT (M003), it is impossible to es-
tablish a direct connection from M001 or M002 (which act as service authorities for
this service) to inform these nodes about the sucess of their subscription (This will
not be an issue later on as all information for those nodes will only be distributed
within community C003, saying within the NATed network). However, manual
entries had to be added to the g4ds repository in order to map the subscription.
As an example, this comamnd for node M004 is:

Listing B.1: Manual adjustment of g4ds database¨ ¥
echo ‘ ‘ insert into serv ices members values (’ S123456 ’ , ’M004 ’) ’ ’ | psq l −

U ug4ds −h gr id01 g4ds
§ ¦

• In order to simplify tracking of messages throughout the laboratory environment
(e.g. by tracing logging information) it was necessary to synchronise the times of
the machines. The following configuration was set up:

– Node M003 (193.63.129.193) acts as the central time server. It uses its own
hardware clock as the only time reference - no internet connection is necessary.
(In the end it was only important to keep the machines synchronised between
each other).

– The remaining nodes (M001, M002, M004 - M006) are acting as clients and
receive their time information using pull mechanism frequently from M003.
Besides the local time as a fall-over source no other time source is used.

Stage 1 - Step 01 - Correct messages

In the first part of the stage 1 experiments, ordinary messages were populated around the
network in order to examine the abilities of G4DS to distribute information. The following
messages were created using the aforementioned chat service.

17/05/2006 - Start correct messages

• Populate messages from node M001

Appendix B. Details for experiment execution 266

– The following actions were carried out for this step:
1. Start G4DS service on all nodes
2. Start chat application on all nodes
3. Send a messages to the list of receivers
4. Shut down the chat application
5. Shut down G4DS service
6. Move log files to output folder

– Distribution list: M001, M002, M003, M006, C001, C002, C003
– Time frame for this step: 19.47 – 19.55
– All logging information available in output/$NODE/stage1/001/a (g4ds log-

ging and console output from chat service)

18/05/2006 - Correct messages continued

• Populate messages from node M002

– The actions are exactly the same as described before for M001
– Distribution list: M001, M003, M005, C001, C002, C003
– Time frame for this step: 10.55 – 11.03
– All logging information available in output/$NODE/stage1/001/b (g4ds log-

ging and console output from chat service)

• Populate messages from node M003

– The actions are exactly the same as described before for M001
– Distribution list: M002, M006, C001, C002, C003
– Time frame for this step: 11.32 – 11.38
– All logging information available in output/$NODE/stage1/001/c (g4ds log-

ging and console output from chat service)

• Populate messages from node M004

– The actions are exactly the same as described before for M001
– Distribution list: M002, M001, M003, M005, C001, C002, C003
– Time frame for this step: 11.40 – 11.46
– All logging information available in output/$NODE/stage1/001/d (g4ds log-

ging and console output from chat service)

• Populate messages from node M005

– The actions are exactly the same as described before for M001
– Distribution list: M002
– Time frame for this step: 11.48 – 11.52
– All logging information available in output/$NODE/stage1/001/e (g4ds log-

ging and console output from chat service)

• Populate messages from node M006

Appendix B. Details for experiment execution 267

– The actions are exactly the same as described before for M001
– Distribution list: M002
– Time frame for this step: 11.53 – 11.57
– All logging information available in output/$NODE/stage1/001/f (g4ds log-

ging and console output from chat service)

Stage 1 - Step 02 - Faulty distribution domains

In the second step of the first stage distribution was facing two problems, either the distribu-
tion domain is faulty for the local node or one one within the distribution domain is down.
The following messages were sent using the chat service in order to examine g4ds‘ reaction
to these problems:

18/05/2006 – Faulty distribution

• Faulty distribtion from M002 - unknown distribution domains

– The following actions were carried out for this step:
1. Start G4DS service on all nodes
2. Start chat application on all nodes
3. Send a messages to the list of receivers
4. Shut down the chat application
5. Shut down G4DS service
6. Move log files to output folder

– Distribution list: M002, C007
– Time frame for this step: 12.16 – 12.21
– All logging information available in output/$NODE/stage1/002/a (g4ds log-

ging and console output from chat service)

• Faulty distribtion from M003 - unknown distribution domains

– The actions are exactly the same as described before for M001
– Distribution list: C007, M000
– Time frame for this step: 12.25 – 12.29
– All logging information available in output/$NODE/stage1/002/b (g4ds log-

ging and console output from chat service)

• Faulty distribtion from M002 - chat application on node M003 no started

– The actions are exactly the same as described before for M001; however, the
chat service is not started on node M003

– Distribution list: M002, C002, M005
– Time frame for this step: 12.30 – 12.34
– All logging information available in output/$NODE/stage1/002/c (g4ds log-

ging and console output from chat service)

Appendix B. Details for experiment execution 268

• Faulty distribtion from M004 - g4ds service not started on node M002

– The actions are exactly the same as described before for M001; however, nor
the g4ds service neither the chat service are started on node M002

– Distribution list: M002, C001
– Time frame for this step: 12.35 – 12.39
– All logging information available in output/$NODE/stage1/002/d (g4ds log-

ging and console output from chat service)

• Faulty distribtion from M002 and M006 - g4ds service not started on node M003

– The actions are exactly the same as described before for M001; however, nor
the g4ds service neither the chat service are started on node M003

– Distribution list: for M002 - C002, M006; for M006 - M003, M002
– Time frame for this step: 12.42 – 12.46
– All logging information available in output/$NODE/stage1/002/e (g4ds log-

ging and console output from chat service)

Stage 1 - Step 03 - Access control evaluation

The third step of the stage 1 experiment evaluates access control features of G4DS. For
these reason, changes were applied to the G4DS access control policies before messages were
populated. The following steps were carried out for this step in detail:

18/05/2006 – G4DS Access Control

• Backup access control ruleset on every node

• M002 blocks M005 application messages

– The following actions were carried out for this step:
1. Access control policy files have to be adjusted
2. Start G4DS service on all nodes
3. Start chat application on all nodes
4. Send a messages to the list of receivers
5. Shut down the chat application
6. Shut down G4DS service
7. Move log files to output folder
8. Access control policy files have to be resetted

– Access Control Policy changes: On node M002 all incoming application mes-
sages with sender M005 are dropped

– Distribution list: M004 to M002; M005 to M002; M005 to C001
– Time frame for this step: 13.34– 13.38
– All logging information available in output/$NODE/stage1/003/a (g4ds log-

ging and console output from chat service)

Appendix B. Details for experiment execution 269

• M001 blocks M003 application messages
– The actions are exactly the same as described in the first case of this step
– Access Control Policy changes: On node M001 all incoming application mes-

sages with sender M003 are dropped
– Distribution list: M003 to M001; M003 to M002; M005 to M001
– Time frame for this step: 17.17– 17.21
– All logging information available in output/$NODE/stage1/003/b (g4ds log-

ging and console output from chat service)
• M002 blocks messages from community C002

– The actions are exactly the same as described in the first case of this step
– Access Control Policy changes: On node M001 all incoming messages sent

within community C002 are dropped
– Distribution list: M003 to M002; M005 to M002
– Time frame for this step: 18.07– 18.11
– All logging information available in output/$NODE/stage1/003/c (g4ds log-

ging and console output from chat service)
• M001 blocks application messages for chat service

– The actions are exactly the same as described in the first case of this step
– Access Control Policy changes: On node M001 all incoming application mes-

sages for service with S123456 are dropped
– Distribution list: M005 to M001; M001 to M001; M005 to M002
– Time frame for this step: 18.34– 18.37
– All logging information available in output/$NODE/stage1/003/d (g4ds log-

ging and console output from chat service)

Stage 1 - Step 04 - Penetration

The last step of the first stage describes the way G4DS was penetrated in order to check
its resistance against Sniffing, Spoofing and DOS attacks. For the spoofing attacks a small
Python program was created in order to replace member ids within G4DS messages (pro-
gram source code in listing B.20). The ethereal application was started with the following
parameters in order to generate raw output:

Listing B.2: Call of Ethereal network sniffer¨ ¥
t e t h e r e a l − i eth0 −f ‘ ‘ port not 22 and not arp and not broadcast and not

mu l t i ca s t ’ ’ −w $outputFilename
§ ¦

For evaluation of the ethereal results, the Ethereal-X-application was started and the dump
files were loaded into it.

Furthermore, there was a need to direct network traffic to tcp ports, g4ds is listening
on for denial-of-service attacks and spoofing attacks. Using netcat, the compilation of the
commands is shown in listing B.3.

Appendix B. Details for experiment execution 270

Listing B.3: Commands for G4DS denial of service¨ ¥
netcat commands f o r DOS
#
whi le t e s t 1 :
do

nc j4− i t r l −12 8080 < soap−dump . m001 . txt >/dev/ nu l l & # f o r soap or
nc j4− i t r l −12 2000 < tcp−dump . m001 . txt >/dev/ nu l l & # f o r tcp socket
s l e e p 1 # i f the de lay between 2 packets i s 1 second
k i l l a l l nc

done
#
netcat command f o r spoo f i ng
nc −g −s 193 . 63 . 129 . 193 193 . 63 . 129 . 184 2000 < tcp−dump . txt

§ ¦

In detail, the following actions were carried out for this step:

19/05/2006 – G4DS Penetration

• Sniffing on M001

– Little changes were applied to the g4ds source code in order to simulate a node
within the network, which acts as a gateway and attempts to read information,
which it is supposed to passed on to another node.

– The following actions were carried out for this step:
1. Start G4DS service on all nodes
2. Start chat application on all nodes
3. Start Ethereal capturing
4. Send a messages to the list of receivers from within this distribution list
5. Stop Ethereal, save ethereal dump and go back to step 3 of this list until

there is no more distribution lists
6. Shut down the chat application
7. Shut down G4DS service
8. Move log files to output folder

– Distribution domains and time frames of execution:
1. 01: M002 to M001, M003, M005; Time frame: 17:35 - 17:39
2. 02: M001 to M001, M002, M003; Time frame: 17:40 - 17:44
3. 03: M003 to M003, M001, M002; Time frame: 17:45 - 17:48
4. 04: M005 to M001, M002, M003; Time frame: 17:48 - 17:52

– All logging information available in output/$NODE/stage1/004/a{01-04} (g4ds
logging and console output from chat service)

20/05/2006 – G4DS Penetration continued

• Flood g4ds with netcat

– The following actions were carried out for this step:

Appendix B. Details for experiment execution 271

1. Start ethereal to capture sample traffic for a certain protocol, employed
by g4ds

2. Temporarely uncomment endpoints for the destination of the sample mes-
sages for all protocols but the disired one within that endpoints member
description and apply this updated description using G4DS maintainence
environment

3. Generate sample traffic by sending one message between 2 nodes
4. Stop Ethereal and extract application data using GUI
5. If more protocols are to be captured, choose another one and go back to

item 1
6. Reset and apply all member descriptions
7. Start G4DS service on all nodes
8. Start chat application on all node
9. Start background noise (penetration) using netcat as described in listing

B.3 (DOS part)
10. Apply changes on the local g4ds implementation in order ot force g4ds to

use a certain protocol (edit the configuration module protocols/config.py)
11. Send ordinary messages from list
12. Stop background noise
13. Shut down chat application
14. Shut down G4DS service
15. Move log files to output folder

– Penetration nodes and distribution domains:
1. 01: Noise are g4ds inside soap requests from M002 to M001

Distribution list: M002 to M003, M001; M005 to M003, M001; M003 to
M003, M001
Time frame: 13:23 - 13:29

2. 02: Noise are g4ds inside TCP/IP packets from M002 to M001
Distribution list: M002 to M003, M001; M005 to M003, M001; M003 to
M003, M001
Time frame: 14:12 - 14:18

3. 03: Noise are soap requests from Ext to M001 (from external source)
Distribution list: M003 to M003, M001; M005 to M003, M001
Time frame: 14:49 - 14:54

4. 04: Noise are TCP/IP packets from Ext to M001 (from external source)
Distribution list: M003 to M003, M001; M005 to M003, M001
Time frame: 14:59 - 15:03

– All logging information available in output/$NODE/stage1/004/b{01-04} (g4ds
logging, console output from chat service, sample traffic)

22/05/2006 – G4DS Penetration continued

Appendix B. Details for experiment execution 272

• Spoofing

– The following actions were carried out for this step:
1. As performed for the previous step (g4ds flooding) generate a sample

message and capture it using tethereal; extract application data using
Ethereal

2. Modify the identity for the source member within the message using the
program shown in listing B.20 and save the fakeMessage

3. Start G4DS service on nodes M001, M002, M003
4. Start chat application on nodes M001, M002, M003
5. Send messages (plain or faked) to M001 (j4-itrl-12) using netcat from M002

(j130-mp) (see listing B.3 for detailed command) - see list of messages
directions underneath

6. Stop chat application on nodes M001, M002, M003
7. Stop G4DS service on nodes M001, M002, M003
8. Move log files to output folder

– Messages and time frames of execution (all messages are sent from M002 to
M001):
1. 01: Normal message - no failure; Time frame: 15:47 - 15:55
2. 02: Spoofed IP address; Time frame: 15:58 - 16:02
3. 03: Spoofed G4DS member id; Time frame: 15:47 - 15:55
4. 02: Spoofed IP address and member id; Time frame: 15:58 - 16:02

– All logging information available in output/$NODE/stage1/004/c{a-d} (g4ds
logging, console output from chat service)

B.1.2. Stage 2

This section provides detailed information about the actions carried out for stage 2 of the
experiment in the laboratory environment. The definition of the experiment for this stage
are written down in section 4.5.2; the corresponding analysis part may be found in section
7.3.2.

After providing information about the way, the laboratory environment has been modified
in order to be suitable for carrying out the experiments for this stage, the details for this
stage are presented on a one subsection per step basis. Stage two of the experiment has been
broken down into the following five steps:

• Sending of correct messages

• Rejection of messages

• Insertion of remote events

• Content and different levels of details

• Performance and overhead measurements

Appendix B. Details for experiment execution 273

Preparation

For carrying out the second stage of the experiment, the laboratory environment has been
taken from the first stage and extended by certain components and features. The single steps
for these changes are as follows.

06/06/2006 - Modifications for laboratory environment

• The Inter-Organisational Intrusion Detection System application itself had to be
deployed on every node within the G4DS network. For this step the instructions
given in the IOIDS installation guide have been used (see listing B.21). In detail,
I went through the following list of items for each node in the G4DS network:

– A PostgreSQL database management system (DBMS) has been running on
each node already. For the IOIDS repository a new database had to be created
and privileges had to be set up. Each node is using its own host for the
database, username is uioids, as password the phrase psoioids was assigned.
The database itself was named ioids. Privileges had to be set up in a way
that the user uioids is allowed to connect to the database ioids using password
authentication from the ip address of the node in question. (The PostgreSQL
access control file pg hba.conf had to be extended by one line.)

– The python library SoapSyTools had to be installed. As part of the project
I realised that certain parts of the IOIDS implementation are reuseable for
other application, connecting against the SoapSy database. Consequently, I
excluded this functionality into its own library. It has to be unpacked and
installed as a Python site-package using the command:
python setup.py install

– Configuration of G4DS: The IOIDS service description had to be applied to
G4DS using the G4DS maintainence environment. Furthermore, a service
key had to be created and exported into a location accessable for the IOIDS
application later on.

– The IOIDS package has to be unpacked.
– Configuration of XSM: XSM is the server-side process running on the SoapSy

server in order to provided XML-based RPC access to the databae. XSM has
not been developed as part of my project; however, I added a version into the
IOIDS archive, which is working with IOIDS. It has to be configured in order to
connect against the just installed IOIDS database on startup time. For these
reasons, the configuration file XSM-Configuration.xml, located underneath the
third-party folder was edited and settings as applied for the ioids database were
applied.

– The IOIDS service itself has to be configured using the configuration module
config.py located in the root folder within the archive. Settings have to be
applied for making IOIDS connected against XSM at startup time (the host
therefore should be localhost by default). Furthermore, I specified the location
of the G4DS key, which was created in one of the former steps.

Appendix B. Details for experiment execution 274

– Install XSM and IOIDS on the system and distribute files in the local filesys-
tem by running the following command in the ioids folder:
python setup.py install

– Afterwards, privileges had to be applied on the files /etc/init.d/xsmrc and
/usr/sbin/XSM.py in order to make them executable for the user:
chmod 755 /etc/init.d/xsmrc && chmod 755 /usr/sbin/XSM.py The final
step on each node was to integrate IOIDS with the G4DS access control. The
available g4ds policy had to be extended by a rule in order to redirect all
IOIDS messages access control requests to the new (provided) ioids policy file.
Furthermore, this policy file had to be registered with G4DS by providing its
name in the G4DS configuration file /etc/g4ds.conf (see IOIDS installation
instructions for more details).

07/06/2006 - Modifications for laboratory environment continued

• In order to finish of the IOIDS installation, the IOIDS date engine had to be
configured:

– The IOIDS data engine is configured using a policy file named ioids policy.xml,
which is maintained in the folder descriptions underneath the IOIDS folder.
Each node was configured in a way that it generates local events for each
community it is a member of. No messages from remote hosts are to be
passed on. The distribution domains for each node are given in table B.1.
(The trustees row in there specifies, from which nodes incoming information
should be processed.)

Table B.1.: IOIDS DataEngine Distribution and Trustees

M001 M002 M003 M004 M005 M006
C001 * *
C002 * *
C003 * * * *
Trustees M001 M001 M001 M003 M003 M003

M002 M002 M003 M004 M004 M004
M003 M006 M005 M005 M005

M006 M006 M006

Stage 2 - Step 01 - Correct messages

Within this step a single event shall be inserted into each SoapSy database, which is to be
picked up by the IOIDS system in order to send it off to its distribution domain(s).

07/06/2006 - Sucessful messages from each node

Appendix B. Details for experiment execution 275

• On each node the following actions had to be performed:

– Protocol the IOIDS database status (latest event ids)
– Start the G4DS service on every node
– Start the XSM service on every node
– Start IOIDS on every node
– For each node within the G4DS network

∗ Insert one event manually into the SoapSy database using the soapClient
coming with the XSM XML RPC program

∗ Wait 2 minutes before progressing to the next node in order to maintain
a time gap within the log files between the events

– Stop IOIDS on every node
– Stop the XSM service on every node
– Stop the G4DS service on every node
– Relocate available logging information into corresponding output folder

• Time frame for this step: 13.38 – 13.50

• All logging information available in output/$NODE/stage2/001 (g4ds logging,
ioids logging, database status information and console output from manual event
insertion)

Stage 2 - Step 02 - Rejected messages

In contrast to the first step of this stage this one shall examine features of IOIDS alone, firstly,
and in correlation with G4DS, secondly, to filter certain messages, which are not supposed
to be processed on the local node.

07/06/2006 - Filter IOIDS messages

• Filter messages using G4DS access control

– Before the tests were run, the following changes to the access control policies
had been applied on the following nodes:
∗ M001: reject all writing access for service IOIDS from M002
∗ M003: allow all writing access for service IOIDS from M002

– Before the test were run, the following changes to the IOIDS data engine had
been applied on the following nodes:
∗ M002: Distribute to M003 (on top of the existing rule, defining distribu-

tion to C001)
– Afterwards, the folling steps were gone through on each node:

∗ Protocol the IOIDS database status (latest event ids)
∗ Start the G4DS service on every node
∗ Start the XSM service on every node
∗ Start IOIDS on every node

Appendix B. Details for experiment execution 276

∗ Insert one event on each of the nodes (M003, M002) manually into the
SoapSy database using the XSM RPC soap client and wait 2 minutes
before progressing to the next node in order to maintain a time gap within
the log files between the events

∗ Stop IOIDS on every node
∗ Stop the XSM service on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Note: As there was a problem with the data engine rule on node M003 in the
first run (it was not accepting service messages from M002), the second part
was run again.

– Time frame for this step: 16.02 – 16.17
– All logging information available in output/$NODE/stage2/002/a (g4ds log-

ging, ioids logging, database status information and console output from man-
ual event insertion)

• Filter messages using IOIDS data engine policies

– Before the tests were run, the following changes to the access control policies
had been applied on the following nodes:
∗ M002: allow all writing access for service IOIDS from source M003
∗ M003: allow all writing access for service IOIDS from source M002

– Afterwards, the folling steps were gone through on each node:
∗ Protocol the IOIDS database status (latest event ids)
∗ Start the G4DS service on every node
∗ Start the XSM service on every node
∗ Start IOIDS on every node
∗ Insert one event on each of the nodes (M002, M003) manually into the

SoapSy database using the XSM RPC soap client and wait 2 minutes
before progressing to the next node in order to maintain a time gap within
the log files between the events

∗ Stop IOIDS on every node
∗ Stop the XSM service on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Note: As there was a problem with the g4ds access control rule on node M002
in the first run (it was not allowing service messages from M003), the first
part was run again.

– Time frame for this step: 16.38 – 16.49
– All logging information available in output/$NODE/stage2/002/b (g4ds log-

ging, ioids logging, database status information and console output from man-
ual event insertion)

Appendix B. Details for experiment execution 277

Stage 2 - Step 03 - Remote events

The IOIDS data engine is capable to pass on ioids events from remote sources to other nodes
within the network. It shall be examined, whether information is passed on correctly, as
indicated in the policy files, and whether information is kept cosistent.

08/06/2006 - Remote Events

• Pass on IOIDS events from remote sources to other nodes

– Before the test were run, the following changes to the IOIDS data engine had
been applied on the following nodes (listing B.4 shows one new date engine
rules applied on M001 for these reasons):
∗ M001: Any remote event from C002 shall be passed on to member M002

and any remote event from C001 shall be passed on to member M003
∗ M003: Any remote event from either C001 or C002 shall be passed on to

membes M004, M005 and M006
– Afterwards, the folling steps were gone through:

∗ Protocol the IOIDS database status (latest event ids) on every node
∗ Start the G4DS service on every node
∗ Start the XSM service on every node; the XSM service was kept run-

ning from now on and not shut down at all anymore during experiment
execution

∗ Start IOIDS on every node
∗ Insert a new event manually into the SoapSy databases of the nodes given

in the distribution list; leave 2 minutes time gap between each event in
order to simplify tracing log files

∗ Stop IOIDS on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Distribution list: M001, M002, M003, M004
– Time frame for this step: 10.33 – 10.45
– All logging information available in output/$NODE/stage2/003 (g4ds logging,

ioids logging, database status information and console output from manual
event insertion)

Appendix B. Details for experiment execution 278

Listing B.4: New rule for IOIDS Data Engine Policy on node M001¨ ¥
<r u l e>

<id>00150</ id>
<s i t u a t i o n>

<o r i g i n>remote</ o r i g i n>
<sender>M002</ sender>

</ s i t u a t i o n>

<r e a c t i o n s>
<r e a c t i on number=”1”>

<type>NewLocalEvent</ type>
<parameters>

<c l a s s i f i c a t i o n>Auto</ c l a s s i f i c a t i o n>
<community>Auto</community>
<d i s t r i b u t e>

<domain type=”member”>M003</domain>
</ d i s t r i b u t e>

</parameters>
</ r e a c t i on>
<r e a c t i on number=”99”>

<type>Terminate</ type>
</ r e a c t i on>

</ r e a c t i o n s>
</ ru l e>

§ ¦

Stage 2 - Step 04 - Content and levels of details

The sources events in the SoapSy database may contain different levels of detail; meaning
e.g. for a snort event information about the sensor. It was checked, whether these different
levels are mirrored appropriately on the receiver‘s side of such an event as well.

08/06/2006 - Different levels of details for events

• Before this step could be executed, different sample events were created, to be
inserted manually into a node‘s SoapSy database. They are made available in the
output folder of this step on node M004.

• Insert events with different numbers of related information

– After preparation, the following steps were gone through:
∗ Protocol the IOIDS database status (latest event ids) on every node
∗ Start the G4DS service on every node
∗ Start IOIDS on every node
∗ Insert the manually created events into the SoapSy database on node

M004. Leave a 2 minute time gap between the two of them.
∗ Stop IOIDS on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Time frame for this partial step: 13.23 – 13.25

• Insert events with certain timestamp values

Appendix B. Details for experiment execution 279

– After preparation, the following steps were gone through:
∗ Protocol the IOIDS database status (latest event ids) on every node
∗ Start the G4DS service on every node
∗ Start IOIDS on every node
∗ Insert the manually created events into the SoapSy database on node

M004. Leave a 2 minute time gap between them. As there were 2 events
with 2 different timestamps, insert the first one first, then the second one
and finally the first one again

∗ Stop IOIDS on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Time frame for this partial step: 16.16 – 16.21

• All logging information available in output/$NODE/stage2/004/{a—b} (g4ds log-
ging, ioids logging, database status information, console output from manual event
insertion and xml files for new events to be inserted)

Stage 2 - Step 05 - Performance and overhead

The last step of stage two of the experiments deals with some time and size measurement for
the combination of IOIDS and G4DS in action.

09/06/2006 - Performance and Overhead

• Measure time for an event travelling through the network

– Before the test could be run for this step, certain adjustments had to be done
on data engine policies in order to set them up for passing on messages:
∗ M001: pass remote messages from member M002 on to member M003
∗ M003: pass remote messages from member M001 or M002 on to member

M005
– Afterwards, the step was carried out by going through the following list of

actions:
∗ Protocol the IOIDS database status (latest event ids) on every node
∗ Start the G4DS service on every node
∗ Start IOIDS on every node
∗ Generate one event manually on each node from the list M004, M002,

M002 and examine timestamp information from logfiles. Leave 2 minutes
gap between each event.

∗ Stop IOIDS on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Time frame for this partial step: 08.17 – 08.28

Appendix B. Details for experiment execution 280

• Measure maximal throughput of events

– This partial step was carried out by running through the following steps:
∗ Protocol the IOIDS database status (latest event ids) on every node
∗ Start the G4DS service on every node
∗ Start IOIDS on every node
∗ Use the shell script shown in listing B.5 for generating events for the local

SoapSy database with a certain time gap between each insert and keep it
running for 2 minutes (hold CTRL-C for stopping). Perform five seperate
runs - time gaps are 10, 5, 2, 1 and 0 seconds.

∗ Stop IOIDS on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Time frame for this partial step: 08.52 – 09.05 & 09.33 – 10.15 (there was
a break between the 5 and 2 seconds gap)

• Measure protocol overhead in the different layers of the IOIDS / G4DS system

– For the last part of this step the network sniffer ethereal had to be deployed
on nodes M001 and M004 (the command line based capturing tool tethereal).
Furthermore, the IOIDS data engine on node M002 was configured to addi-
tionally send off local events to node M003 (which generates a routed event
through M001).

– Afterwards, this partial step was carried out by running through the following
steps:
∗ Protocol the IOIDS database status (latest event ids) on every node
∗ Start the G4DS service on every node
∗ Start IOIDS on every node
∗ Start ethereal network sniffer on nodes M001 and M004 as shown in listing

B.6
∗ Insert an event into the SoapSy database on node M004 firstly and node

M002 two minutes after.
∗ Stop ethereal network sniffer on nodes M001 and M004 and evaluate size

information from its output. Furthermore, use size information provided
in G4DS and IOIDS log files.

∗ Stop IOIDS on every node
∗ Stop the G4DS service on every node
∗ Relocate available logging information into corresponding output folder

– Time frame for this partial step: 11.23 – 11.32

• All logging information available in output/$NODE/stage2/005/{a-c} (g4ds log-
ging, ioids logging, database status information and console output from manual
event insertion)

Appendix B. Details for experiment execution 281

Listing B.5: Shell script for generating load on local SoapSy database¨ ¥
whi le t e s t 1 :
do
python . . / . . / soapCl i ent . py −a l o c a l h o s t − i . . / . . / i n s e r t 4 . xml
s l e e p $ timegap
done

§ ¦

Listing B.6: Start ethereal for capturing G4DS traffic¨ ¥
t e t h e r e a l −f ‘ ‘ (port 8080 or port 2000) and not broadcast and not mu l t i ca s t ’ ’

−w out . dump
§ ¦

B.1.3. Stage 3

The last stage of the experiments deals with the evaluation of the overall system and the
comparison of results achieved with IOIDS against other state-of-the-art approaches within
the DIDS context.

After the complete details about the modifications made to the laboratory environment to
suit requirement for stage three experiments, each of the following five steps within this stage
will be covered in its own subsection:

• Distribution of correct event information

• Generation of high load on certain nodes

• Availability issues and Denial-of-Service resistance

• Data Engine and Access Control

• Performance and Benchmarking

Preparation

The IOIDS environment had been installed in the previous stage almost completely already.
However, as this stage shall evaluate IOIDS features in comparison to other similar approaches
a list of extensions and modifications had to be deployed, which are in detail:

In common for all approaches deployed in the laboratory environment are the following
facts:

• High-Level installations are deployed; meaning that every node represents its own or-
ganisation (usually called managers within the approaches)

• Nodes M002, M004 and M005 act as data sources for the installations; meaning the
sensors are to be installed on them

• All nodes (apart from M006) act as data sinks

Appendix B. Details for experiment execution 282

• Nodes M001 and M003 are in charge to pass on messages from one domain to another
(depending on the approach called gateway or relayers)

• Node M006 will be used as a penetrator for this stage only

12/06/2006 - Modifications for laboratory environment

• For the IOIDS architecture, which was in place from stages one and two already,
the following modifications were applied:

– On the sensor nodes (M002, M004 and M005) a Snort installation was installed
with output plugin PGSQL enabled (version 2.3.2-3 for M004 and M005 and
2.4.3-r1 for M002). Furthermore, a database had to be created on the locally
present database management systems (PostgreSQL) (Details: username is
usnort; password is pwsnort and database name is snort) and the relations
were created using the SQL scripts coming with the Snort distribution. The
Snort IDS was configured to output event data into the prepared database on
log-level. (The corresponding line within the Snort configuration file /etc/s-
nort/snort.conf is shown for node M001 in listing B.7)

– The SnortDB2Soapsy data migration tool had to be installed on those ma-
chines (M002, M004, M005) in order to migrate data from the Snort database
into the SoapSy database. It is provided as a resource for this project; only
needs to be started - database parameters have to be configured in the con-
figuration module config.py and it can be started right afterwards by calling
the Python module snortdb to soapsy.py.

• In order to penetrate the network in later steps the penetration tool Nessus were
deployed. Nessus comes as a client-server architecture; the server, which is execut-
ing the penetrations, was installed on the node M006, the client, which is coming
as a graphical user interface, was deployed on machine M001. Connection between
them was established through a SSH tunnel with reverse port forwarding on TCP
port 1241.

• For the deployement of components of the open-source Intrusion Detection System
framework Prelude the following steps were carried out:

– On the sensor nodes M002, M004 and M005 another Snort installation was
performed, this time with the output plugin prelude enabled. (see listing B.7
for the corresponding line within the Snort configuration file)

– On each node (M001-M005) the following components of the Prelude frame-
work had to be installed:
∗ libprelude (0.9.9) - The essential library for Prelude; a requirement to

install any other component. (requires installation for libcrypt, libgpg
and gnutls)

∗ libpreludedb (0.9.8) - Enables the prelude manager to log data into a
database management system. (requires postgres headers to be installed)
A database was created on each of the available PostgreSQL DMBS for

Appendix B. Details for experiment execution 283

nodes M001-M005 (parameters uprelude, pwprelude and prelude) and the
SQL script for creating the relations in there, which were provided with
the prelude distribution, was executed against the database.

∗ prelude-manager (0.9.4.1) - The heart of each Prelude installation. Af-
ter installation it had to be configured for logging into the just created
database.

∗ As there was a version problem reported by the prelude-manager when
trying to connect against the database, the value for the relations within
the database had to be adjusted manually (from version 14.4 to 14.5).

– The Snort clients have to authenticate at the local prelude-manager whenever
they shall report alerts into it; consequently, keys had to be created and the
access granted to these sensors on the managers. (Check Prelude handbook
ThePreludeTeam (2006) for details)

– Additionally, the Prelude management console Prewikka was installed on node
M001 in order to access and present results more easily. For this step, the
library Cheetah was installed in version 2.0rc6, yet another database had
to be created (parameters: uprewikka, pwprewikka, prewikka) on node M001,
which was populated with relations using the SQL file provided with Prewikka
and the management console Prewikka was installed in version 0.9.5. In the
end, the installed components for the Prelude environment with their versions
are shown in table B.2.

Listing B.7: Enable Snort to log into certain output facilities¨ ¥
enable a l e r t i n g in to PostgreSQL database
output database : log , po s tg r e sq l , use r=usnort password=pwsnort dbname=snor t

host=j4− i t r l −12.comp . glam . ac . uk

OR enable a l e r t i n g in to Prelude framework
output a l e r t p r e l u d e : p r o f i l e=snor t

§ ¦

Table B.2.: Prelude components deployed for Experiment

M001 M002 M003 M004 M005 M006
Libprelude 0.9.9 0.9.9 0.9.9 0.9.9 0.9.9
Libpreludedb 0.9.8 0.9.8 0.9.8 0.9.8 0.9.8
Prelude-manager 0.9.4.1 0.9.4.1 0.9.4.1 0.9.4.1 0.9.4.1
Snort 2.4.5 2.4.5 2.4.5
Prewikka 0.9.5

13/06/2006 - Modifications for laboratory environment continued

Appendix B. Details for experiment execution 284

• To finish of the deployment of the Prelude environment relaying had to be set up
between certain node in order to support inter-domain communication. Therefore,
the following relays were set up:

– Nodes M004 and M005 relay all traffic to node M003
– Node M003 relays all traffic to M001
– Node M002 relays all traffic to M001

For each of those relationships, the following actions had to be gone through:

– The receiving prelude-manager has to be set up to listen on the real ethernet
interface for incoming traffic. (default is the localhost interface on 127.0.0.1)

– The sending prelude-manager had to create a key and register with the re-
ceiving prelude-manager, which has in turn to accept this node as a data
source

– The relaying had to be enabled on the sending prelude-manager by specifying
the required parameters within the prelude manager configuration file.

Again I refer to the documentation in the Prelude Handbook (ThePreludeTeam
(2006)) for detailed information on setting up the environment.

• The deployment of the SnortNet environment environment turned out to be far
more difficult than expecting when defining the experiments. This started with
problems in finding the corresponding implementation itself and did not stop when
trying to set up snort to use the SnortNet output plugin. In the end, I had to
give up on deploying a SnortNet infrastructure. The problems I was facing are
discussed in more detail in the analysis part for stage 3 experiments in section
7.3.3.

• The deployment of an AirCert environment tends to be rather difficult due to the
complexity of the approach. Consequently, I started up with installing some of
the components on a single node:

– libair (version 0.5.21) - the essential library for all other components; compile
with postgresql support

– pathogen (0.2.13)
– ACID (0.9.6b23) - the analysis console for AirCert; deployed using an apache2

web-server with PHP4 and some further extensions
– Snort with XML output plug-in; Version 2.0.0 had to be chosen as later ver-

sions do not allow XML output anymore

14/06/2006 - 17/04/2006 - Modifications for laboratory environment continued

• After these initial tests with some of the components, the AirCERT documenta-
tion “AirCERT: The Definitive Guide” (Trammell et al. (2005)) had been utilised
to deploy the AirCERT infrastructure. I attempted to install all necessary com-
ponents for one side on node M001, with the following steps and outcomes:

– The libarir AirCERT library (0.5.21) - as in the run before

Appendix B. Details for experiment execution 285

– The rex (0.3.13) the text analyser together with dup, which is in charge to
eliminate duplicate entries

– A dredge installation (0.5.11) - the message transmitter
– An openssl installation and the configuration to establish a certificate author-

ity on the node. Several keys and certificates had to be created and signed as
indicated in the AirCERT documentations.

– An Apache installation, which is supposed to act as a receiver when started
with its modules for DAV, DAVFS, SSL and URL Rewriting. Many problems
had to be resolved when trying to get the constellation of these modules to
work.

– Several attempts to get components working by manual invocation of them or
by use of the management scripts coming with the AirCERT distribution

– Several attempts to create relations within the aircert database by using SQL
scripts from any version and module available for AirCERT

– The installation of Pathogen (0.2.13) - the database deserialiser, which af-
ter sucessful compiling could not be started due to an internal error called
PGN E CFGPARSE. Many attempts were made to get around the error; how-
ever, the best possible call on the command line I could think of is shown in
listing B.8 has not gone through either.

In the end I decided to give up on further attempts on experiments with AirCERT
due to all the problems I faced. More information and a conclusion for this decision
is provided in section 7.3.1 within the analysis part.

Listing B.8: Command to start Pathogen (AirCERT module)¨ ¥
/ usr / l o c a l / bin /pathogen −p / usr / l o c a l / e t c /snml . p i l − i ‘ ‘ / usr / l o c a l /apache2/

htdocs /dav/m001−dredge / snort−snml/ rex −∗.xml ’ ’ −out /var / a i r c e r t /pathogen/
out −− l o g f i l e / var / log /pathogen . og −− l o g l e v e l debug db= ‘ ‘ p o s t g r e s q l : /
a i r c e r t : pwa i r c e r t@193 . 6 3 . 1 2 9 . 1 8 4 :5432 / a i r c e r t ’ ’ s i d = ‘ ‘1 ’ ’

§ ¦

Stage 3 - Step 01 - Correct event information

The first step of the last stage deals with the processing and distribution of event information
from a sensor located on a machine connected to the internet; consequently an average amount
of ordinary event data should be generated.

18/06/2006 - Real world event generation

• Before this step was started, the following configurations were applied:

– For IOIDS the data engine on M002 was configured to distribute event infor-
mation into community C001

– For Prelude IDS the relaying was configured on node M002, that node M001
is the very only parent manager for that node.

Appendix B. Details for experiment execution 286

• After setting up the environment, the test was executed by going through the
following steps three times, as it was essential to run this test several times due to
changes occuring in the attacks pattern from the internet:

– Capture status of IOIDS and Prelude database
– Start G4DS and IOIDS on all nodes
– Start the SnortDB-To-Soapsy Converter first and the Snort IDS (configured

for PostgreSQL output) afterwards on the capturing node M002
– After the pre-defined time range of 2 minutes shut down the Snort IDS first

and the SnortDB-To-SoapSy converter afterwards on the capturing node M002
as soon as it was made sure that no new events were coming through for it
anymore

– After making sure that no events are processed by IOIDS anymore, shutdown
IOIDS and G4DS on all nodes

– Start the Prelude-Manager on all nodes
– Start the Prelude-configured version of Snort on the capturing node M002
– After the pre-defined time range of 2 minutes shutdown the Snort IDS on the

capturing node M002
– Shutdown the Prelude-Manager on all nodes
– Store and relocate all available logging and output information in the appro-

priate output folder.

• Time frame for this step: see table B.3

• All logging information available in output/$NODE/stage3/001/{A-C} (g4ds log-
ging, ioids logging and database status information)

Stage 3 - Step 02 - High load

For the second step of this stage a predefined amount of event data was generated in an
isolated network segment in order to measure processing capabilites of the approaches when
facing a high load of event data.

18/06/2006 - Purposeful generation of high load

• The intial setup for this step of the experiment was made up by the following
actions:

– The IOIDS configuration is made on nodes M004 and M005, which are both
configured to pass on local events to all members of community C003. (M003
itself is configured to act as a data sink only in this step)

– The Prelude setup changes comprise of the specification of M003 as relay-
manager on both nodes M004 and M005 (keys had been agreed upon in the
setup phase of this stage already). Node M003 is configured to not pass on
any information.

• The execution of the test was carried out the following way:

Appendix B. Details for experiment execution 287

– Capture status of IOIDS and Prelude database
– Start G4DS and IOIDS on all nodes
– Start the SnortDB-To-Soapsy Converter first and the Snort IDS (configured

for PostgreSQL output) afterwards on the capturing nodes M004 and M005
– Execute three complete nessus scans from node M006 on nodes M004 and

M005 in a row without any time break between them. The test included a full
port scan and all available plugins within Nessus for finding vulnerabilities.
(Each of those tests lasts about 5 minutes). Within the appendencies, figures
B.1, B.2 and B.3 show screenshots of the 1) configuration, 2) excution and 3)
results dialog of the nessus application.

– Shut down the Snort IDS first and the SnortDB-To-SoapSy converter after-
wards on the capturing nodes M004 and M005 as soon as it was made sure
that no new events were coming through for it anymore

– After making sure that no events are processed by IOIDS anymore, shutdown
IOIDS and G4DS on all nodes

– Start the Prelude-Manager on all nodes
– Start the Prelude-configured version of Snort on the capturing nodes M004

and M005
– Execute three complete nessus scans from node M006 on nodes M004 and

M005 in a row without any time break between them. The test included a full
port scan and all available plugins within Nessus for finding vulnerabilities.
(Each of those tests lasts about 5 minutes)

– Shutdown the Snort IDS on the capturing nodes M004 and M005
– Shutdown the Prelude-Manager on all nodes
– Store and relocate all available logging and output information in the appro-

priate output folder.
• Note: The IOIDS system turned out to be not capable of processing the vast

amount of data. Consequently, the following components were shut down at the
following situations:

– The SnortDB-To-SoapSy Converter was shutdown after migrating 700 (M004)
or 800 (M005) events from the SnortDB into the SoapSy database

– The IOIDS system was shutdown after one hour, when it still hadn’t finished
to process the entire list of incoming events.

• Time frame for this step: see table B.3
• All logging information available in output/$NODE/stage3/002 (g4ds logging,

ioids logging and database status information)

Stage 3 - Step 03 - Availablitity and Denial-of-Service

The third step of the stage 3 experiments examined to what extend the two approaches in
question were able to maintain processing when certain components of the overall topology
are taken down.

Appendix B. Details for experiment execution 288

Table B.3.: Start and Stop times for Experiment Execution 3-001/002

IOIDS Prelude
Start Stop Start Stop

Stage 3 - 001 A 14:30 14:41 14:42 14:50
Stage 3 - 001 B 15:04 15:16 15:16 15:24
Stage 3 - 001 C 15:29 15:39 15:40 15:50

Stage 3 - 002 16:25 17:20 17:20 17:42

19/06/2006 - DOS and Availability

• The only preparation necessary was to change the settings for the Prelude-Manager
on node M004 to listen on the ethernet interface instead of the localhost interface,
which is enable by default.

• The execution has been devided into two parts, with the first part a node has been
partially disabled, which acts as data source within the network; the second part
in contrast takes partially down a data sink within the network. For each of the
two parts, 4 different scenarios were carried out one after the other, namely:

1. All components on the victim are fully functional
2. The IDS component is taken down on the victim (IOIDS application for IOIDS

approach, Prelude-Manager for Prelude appoach)
3. The communication platform is taken down on the victim (G4DS for IOIDS

approach, Prelude-Manager again for Prelude approach as it does not seperate
between the two components)

4. The network connectivity itself is slowed down by sending loads of network
traffic on the TCP ports used by the approach in question.

Each of the two parts was then carried out by going through the following steps:

– Capture status of IOIDS and Prelude database
– Start G4DS and IOIDS on all nodes
– Start the SnortDB-To-Soapsy Converter first and the Snort IDS (configured

for PostgreSQL output) afterwards on the capturing node M004
– Take down the corresponding component by simply switching it of for IOIDS,

G4DS or Prelude-Manager or by using the shell script as provided in listing
B.9 for slowing down the network interface.

– Run a port scan only using the Nessus application in order to generate a
reasonable amount of event data.

– After a time frame of about half a minute bring back up the taken down
component.

Appendix B. Details for experiment execution 289

– Shut down the Snort IDS first and the SnortDB-To-SoapSy converter after-
wards on the capturing nodes M004 and M005 as soon as it was made sure
that no new events were coming through for it anymore

– After making sure that no events are processed by IOIDS anymore, shutdown
IOIDS and G4DS on all nodes

– Start the Prelude-Manager on all nodes
– Start the Prelude-configured version of Snort on the capturing nodes M004

and M005
– Execute three complete nessus scans from node M006 on nodes M004 and

M005 in a row without any time break between them. The test included a full
port scan and all available plugins within Nessus for finding vulnerabilities.
(Each of those tests lasts about 5 minutes)

– Shutdown the Snort IDS on the capturing nodes M004 and M005
– Shutdown the Prelude-Manager on all nodes
– Store and relocate all available logging and output information in the appro-

priate output folder.

• Time frame for this step: see table B.4

• All logging information available in output/$NODE/stage3/003{A-H} (g4ds log-
ging, ioids logging and database status information)

Listing B.9: ShellScript for generating network traffic on certain TCP ports¨ ¥
whi le t e s t 1
do

echo ‘ ‘∗∗∗∗ ’ ’ | netcat gr id01 4690 & > /dev/ nu l l # f o r Prelude OR

echo ‘ ‘∗∗∗∗ ’ ’ | netcat gr id01 2000 & > /dev/ nu l l # toge the r with
echo ‘ ‘∗∗∗∗ ’ ’ | netcat gr id01 8080 & > /dev/ nu l l # f o r IOIDS / G4DS

s l e ep 0 .1
k i l l a l l ne tcat

done
§ ¦

Stage 3 - Step 04 - Data Engine and Access Control

Step number 4 of the third stage of the practical experiments tests the approaches in the view
of their mechanisms of protecting knowledge against unwanted access. Furthermore, ways
are examined to distribute knowledge to a certain domain depending on certain parameters
of the event.

19/06/2006 - Process and filter messages

• This step is devided into 6 parts, each of them requiring different settings to be
made for the approaches on node M001; these cases with their changes are:

Appendix B. Details for experiment execution 290

Table B.4.: Start and Stop times for Experiment Execution 3-003

IOIDS Prelude
Start Stop Start Stop

Stage 3 - 003 A 09:10 09:27 09:27 09:29
Stage 3 - 003 B 09:40 09:48 09:49 09:55
Stage 3 - 003 C 09:59 10:06 10:06 10:09
Stage 3 - 003 D 10:30 10:36 10:36 10:39
Stage 3 - 003 E 11:12 11:17 11:17 11:20
Stage 3 - 003 F 11:25 11:30 11:30 11:33
Stage 3 - 003 G 11:40 11:46 11:47 11:50
Stage 3 - 003 H 11:54 12:01 12:02 12:04

1. In the first case all incoming events from community C002 shall be pro-
cessed and integreated; information from community C001, however, shall
be dropped. IOIDS data engine policies have to be configured with one rule
for dropping incoming c001 traffic and passing c002 traffic. For the Prelude
Manager the key for M002 has to be deleted from the list of trusted keys.

2. All incoming local events of type generic shall be passed on to community
C002; all events of type snort shall be delivered to community C001 instead.
For IOIDS the corresponding rules have to be integrated into the data engine
policies. Prelude does not support seperation of events based on their nature.

3. All remote event information received from community C002 shall be further
passed on to community C001. The IOIDS data engine policies will be modi-
fied and one rule for remote events is integrated. For prelude the manager on
M003 has to be configured to pass on all information to M001; M001 in turn
will forward to M002. M002 has to be configured to not pass on any messages.

4. Same as before, but also pass on messages in the opposite direction from C001
to C002. The IOIDS data engine policies on M001 get an additional rule on
top of the previous one to pass on remote event from community c001 to
community c002. The relay manager for Prelude on node M002 is configured
with parent manager M001.

5. Messages with a low level of protection (classification) received from C002 are
passed on to C001. A rule will be deployed for the IOIDS data engine (see
listing B.10) for passing on this kind of messages. Prelude IDS is not capable
of making distribution decisions directly based on levels of protection.

6. All messages from community C001 shall be rejected. In IOIDS configuration
terms, the access control policy file will be extended by one rule, addressing
this issue; for Prelude IDS the sensor ID has to be removed from the list of
trusted data sources.

Furthermore, events had to be created, which could be inserted into the SoapSy

Appendix B. Details for experiment execution 291

database manually using the XSM SoapClient. The following events were used:

– The generic event from stage 2
– An IOIDS event was saved from IOIDS before sent of and saved in a file. The

timestamp information was changed to ’now’, which leaves the responsibility
of inserting a timestamp to the database management system.

• After setting up a single part, this one is executed by performing the following list
of actions:

– Capture status of IOIDS and Prelude database
– Start G4DS and IOIDS on all nodes
– Insert XML encoded events as stated in table B.5 into the SoapSy database

using the SoapClient
– After making sure that no events are processed by IOIDS anymore, shutdown

IOIDS and G4DS on all nodes
– Start the Prelude-Manager on all nodes
– Start the Prelude-version of Snort on node M002, M004
– Generate some event data with snort by starting up a quick port scan with

the Nessus scanner on the node specified in the source prelude node in table
B.5.

– Stop the Snort IDS on node M003
– Shutdown the Prelude-Manager on all nodes
– Store and relocate all available logging and output information in the appro-

priate output folder.

• Time frame for this step: see table B.6

• All logging information available in output/$NODE/stage3/004{A-F} (g4ds log-
ging, ioids logging and database status information)

Appendix B. Details for experiment execution 292

Listing B.10: New rule for IOIDS data engine to pass on events with low protection level¨ ¥
< !−− add i t i ona l r u l e f o r experiment s tage 3 s t ep 4 E −−>
<r u l e>

<id>00140</ id>
<s i t u a t i o n>

<o r i g i n>remote</ o r i g i n>
<sender>M003</ sender>
<c l a s s i f i c a t i o n>7 ,8 ,9 ,10</ c l a s s i f i c a t i o n>

</ s i t u a t i o n>

<r e a c t i o n s>
<r e a c t i on number=”1”>

<type>NewLocalEvent</ type>
<parameters>

<c l a s s i f i c a t i o n>Auto</ c l a s s i f i c a t i o n>
<community>Auto</community>
<d i s t r i b u t e>

<domain type=”member”>M002</domain>
</ d i s t r i b u t e>

</parameters>
</ r e a c t i on>
<r e a c t i on number=”99”>

<type>Terminate</ type>
</ r e a c t i on>

</ r e a c t i o n s>

</ ru l e>
§ ¦

Table B.5.: Sources of Events for Experiment Stage 3-004

From
Type IOIDS Prelude To

A Generic M003 M004 M001
Generic M002 M002 M001

B Generic M001 - M001
Snort M001 - M001

C Generic M003 M004 M001
Generic M001 - M001
Generic M002 M002 M001

Snort M003 - M001
D Generic M003 M004 M001

Generic M002 M002 M001
E Generic M003 - M001

Snort M003 - M001
Snort M002 - M001

F Generic M003 M004 M001
Generic M002 M002 M001

Snort M002 - M001

Appendix B. Details for experiment execution 293

Table B.6.: Start and Stop times for Experiment Execution 3-004

IOIDS Prelude
Start Stop Start Stop

Stage 3 - 004 A 15:40 15:44 15:45 15:49
Stage 3 - 004 B 16:09 16:19
Stage 3 - 004 C 16:39 16:48 16:48 16:52
Stage 3 - 004 D 17:31 17:36 17:37 17:42
Stage 3 - 004 E 19:13 19:21
Stage 3 - 004 F 19:38 19:45 19:45 19:48

Stage 3 - Step 05 - Benchmarking

The very last step of the practical experiments is dealing with comparison of the two ap-
proaches regarding their performance and overhead issues.

20/06/2006 - Performance and benchmarking

• For an exact measurement it was important to be able to generate a certain amount
of events within a certain time frame. The only way both approaches can accept
events is through Snort; consequently, the following way was implemented to gen-
erate exactly one single event with the Snort system:

– A new snort rule was developed, which triggers an alert for any incoming
message on port 33333 (see listing B.11 for a copy of this rule)

– Netcat had to be called to trigger exactly this rule within the snort system
(the shell command is shown in listing B.12).

Furthermore, the following changes had to be applied to the approaches in order
to prepare them for this step of the experiment:

– The IOIDS data engine on M004 had to be configured to forward locally
processed event messages to M003 only.

– The IOIDS data engine on M003 had to be configured to forward locally
processed event messages to M001 only.

– The IOIDS data engine on M001 had to be configured to forward locally
processed event messages to M002 only.

– The IOIDS data engine on M005 had to be configured to not pass on messages
at all.

– The Prelude-Manager on node M004 had to be configured to relay all events
to the M003 Prelude-Manager.

– The Prelude-Manager on node M003 had to be configured to relay all events
to the M001 Prelude-Manager.

Appendix B. Details for experiment execution 294

– The Prelude-Manager on node M001 had to be configured to relay all events
to the M002 Prelude-Manager.

After executing the first part of this step (the time measurement for distribution),
the following changes had to be applied again for preparing the environment for
the remaining three benchmarks:

– The IOIDS data engine on node M004 passes messages on to node M005 only.
– The Prelude-Manager on node M004 relays messages to its only parent-manager

on node M005. (keys had to be created and exchanged)

• The execution of the step was carried out by going through the following list of
actions:

– Capture status of IOIDS and Prelude database
– Start G4DS and IOIDS on all nodes
– Start SnortDB-To-SoapSy migration tool on M004
– Start the version of Snort, which is logging into the PostgreSQL database on

M004
– The step of generating data is pretty much depending on the feature to mea-

sure and is explained in the list just underneath this one.
– Stop the Snort IDS first and the SnortDB-To-SoapSy converter as soon as no

data is processed with it anymore
– After making sure that no events are processed by IOIDS anymore, shutdown

IOIDS and G4DS on all nodes
– Start the Prelude-Manager on all nodes
– Start the Prelude-version of Snort on node M002, M004
– The step of generating data is pretty much depending on the feature to mea-

sure and is explained in the list just underneath this one.
– Stop the Snort IDS on node M003
– Shutdown the Prelude-Manager on all nodes
– Store and relocate all available logging and output information in the appro-

priate output folder.

• Due to the different nature of the attributes to benchmark, the generation of
event changes slightly from part to part of this step. The following list provides
the details, how to generate the events for each of the parts:

– For the recording of time, an event takes to travel from the sender to the final
receiver, a single event was created on M006 and directed against node M004.
Directly before the time had to be taken as shown in listing B.12.

– For the measurement of throughput several runs were necessary. The alert
within the snort system was triggered again and again with configurable time
gaps between each two events (as shown in the second part of listing B.12).
The time gaps were decreased, starting with 10 seconds, then going through
5,2 and 1 second to end up with half a second time gap.

Appendix B. Details for experiment execution 295

– The tests for overhead and confidentiality could be executed in one go as all
that was needed was a network sniffer, capturing the traffic. The network
sniffer was started beforehand and a single event was generated as in the first
part.

Listing B.11: Snort rule for triggering a single event for incoming UDP packet¨ ¥
a l e r t udp any any <> any 33333 (msg: ‘ ‘BAD−TRAFFIC tcp port 33333 t r a f f i c −

misc ru l e michael ’ ’ ; c l a s s t ype :m i s c−a c t i v i t y ; s i d : 1 1543 ; r e v : 1 ;)
§ ¦

Listing B.12: Call of netcat to trigger new Snort rule¨ ¥
fo r one s i n g l e event
date && echo ‘ ‘ x ’ ’ | nc −u v i c t im addre s s 33333

f o r a number o f events with X seconds time gap between two o f them
date
whi l e t e s t 1
do

echo ‘ ‘ x ’ ’ | nc −u v i c t im addr e s s 33333
s l e e p X

done
§ ¦

Appendix B. Details for experiment execution 296

B.2. More G4DS resources

Table B.7.: Specifications for laboratory environment A

J130 J4-12 J4-20
Hardware P4 2.8 GHz P3 733 MHz P3 733 MHz

1024 MB 256 MB 256 MB
OS Gentoo 2005.0 Debian Sarge 3.1 Debian Sarge 3.1

2.6.15-r5 2.4.27-2 2.4.27-2
Networking 193.63.148.149/24 193.63.129.184/24 193.63.129.193/24

192.168.1.254/24
Hostname j130-mp j4-itrl-12 j4-itrl-20
Python 2.4.2 2.3.5 2.3.5
Modules
pygresql 3.6.2 3.6.1-1 3.6.1-1
pyXML 0.8.4 0.8.4-1 0.8.4-1
SSLCrypto 0.1.1 0.1.1 0.1.1
SOAPpy 0.11.3 0.11.3-1 0.11.3-1
fpconst 0.7.1 0.7.2 0.7.2
pycrypto 2.0-r1 2.0.1 2.0.1
ezPyCrypto 0.1.1 0.1.1 0.1.1

PostgreSQL 8.0.4 7.4.7-6 7.4.7-6

Listing B.13: SQL Script for Creating G4DS relations¨ ¥
−− SQL Fi l e f o r c r ea t i ng requ i red t a b l e s in the community database
−−
−− Grid fo r D i g i t a l Secur i t y (G4DS)
−− Michael Pilgermann
−− mpilgerm@glam . ac . uk

−−
−− Sec t ions in here :
−− 1 . Communities / members
−− 2 . Re la t ions f o r communities / members
−− 3 . Secur i t y s t u f f
−− 4 . Communication s t u f f
−− 5 . Serv i c e s
−− 6 . Routing
−−

−−
−− 1 s t Sec t ion
−− Tables f o r communities and members
−−
CREATE TABLE MEMBERS
(

ID VARCHAR(100) PRIMARY KEY,
NAME VARCHAR(100) ,

Appendix B. Details for experiment execution 297

MDL VARCHAR(100000) , −− the member d e s c r i p t i on in XML
MDLVERSION VARCHAR(30) ,
MDLDATE DATE

) ;

CREATE TABLE COMMUNITIES
(

ID VARCHAR(100) PRIMARY KEY,
NAME VARCHAR(100) ,
DESCRIPTION VARCHAR(500) ,
TCDL VARCHAR(100000) , −− the t c d e s c r i p t i on in XML
TCDLVERSION VARCHAR(30) ,
TCDLDATE DATE

) ;

−−
−− 2nd Sect ion
−− Tables f o r r e l a t i o n s between communities and members
−−
CREATE TABLE GATEWAYS
(

MEMBER ID VARCHAR(100) REFERENCES MEMBERS(ID) ,
SOURCE COMMUNITY ID VARCHAR(100) REFERENCES COMMUNITIES(ID) ,
DEST COMMUNITY ID VARCHAR(100) REFERENCES COMMUNITIES(ID)

) ;

CREATE TABLE COMMUNITIES MEMBERS
(

MEMBERID VARCHAR(100) REFERENCES MEMBERS(ID) ,
COMMUNITYID VARCHAR(100) REFERENCES COMMUNITIES(ID)

) ;

CREATE TABLE COMMUNITIES AUTHORITIES
(

MEMBERID VARCHAR(100) REFERENCES MEMBERS(ID) ,
COMMUNITYID VARCHAR(100) REFERENCES COMMUNITIES(ID)

) ;

−−
−− 3rd Sect ion
−− Tables f o r s e c u r i t y s t u f f
−−

CREATE TABLE ALGORITHMS
(

ID VARCHAR(100) PRIMARY KEY,
NAME VARCHAR(50) −− NAME such as DSA, RSA, . . .

) ;

CREATE TABLE CREDENTIALS
(

ID VARCHAR(100) PRIMARY KEY,
ALGORITHMID VARCHAR(50) REFERENCES ALGORITHMS(ID) ,
USERNAME VARCHAR(50) , −− user name ; op t i ona l depending on a lgor i thm
KEYVARCHAR(10000) , −− pub l i c key
MEMBERID VARCHAR(100) REFERENCES MEMBERS(ID)

) ;

−− f o r each a lgor i thm ” I” support , i have to prov ide the c r e d en t i a l s
CREATE TABLE PERSONALCREDENTIALS
(

ID VARCHAR(100) PRIMARY KEY,

Appendix B. Details for experiment execution 298

NAME VARCHAR(50) ,
ALGORITHMID VARCHAR(100) REFERENCES ALGORITHMS(ID) ,
KEY PRIVATE VARCHAR(10000) ,
KEY PUBLIC VARCHAR(10000) ,
USERNAME VARCHAR(50) −− user name ; op t i ona l depending on a lgor i thm

) ;

CREATE TABLE COMMUNITIES ALGORITHMS −− which a l gor i thms are supported by which
communtiy

(
COMMUNITYID VARCHAR(100) REFERENCES COMMUNITIES(ID) ,
ALGORITHMID VARCHAR(100) REFERENCES ALGORITHMS(ID)

) ;

−−
−− 4 th Sect ion
−− Tables f o r communication
−−
CREATE TABLE PROTOCOLS
(

ID VARCHAR(100) PRIMARY KEY,
NAME VARCHAR(50) −− NAME such as SOAP, HTTP, SSH

) ;

CREATE TABLE ENDPOINTS −− each endpoint i s de f ined fo r a ce r t a in member wi th in a
ce r t a in community us ing a ce r t a in p ro toco l wi th i t s s p e c i f i c key

(
ID VARCHAR(100) PRIMARY KEY,
MEMBERID VARCHAR(100) REFERENCES MEMBERS(ID) ,
COMMUNITYID VARCHAR(100) REFERENCES COMMUNITIES(ID) ,
PROTOCOLID VARCHAR(100) REFERENCES PROTOCOLS(ID) ,
ADDRESS VARCHAR(500) , −− pro toco l s p e c i f i c address (e . g . URL for SOAP or IP/PORT

for SSH)
CREDENTIALID VARCHAR(100) REFERENCES CREDENTIALS(ID)

) ;

CREATE TABLE COMMUNITIES PROTOCOLS −− which p ro t o co l s are supported by which
community

(
COMMUNITYID VARCHAR(100) REFERENCES COMMUNITIES(ID) ,
PROTOCOLID VARCHAR(100) REFERENCES PROTOCOLS(ID)

) ;

−−
−− 5 th Sect ion
−− Tables f o r Se rv i c e s and t h e i r r e l a t i o n s
−−
CREATE TABLE SERVICES
(

ID VARCHAR(100) PRIMARY KEY,
NAME VARCHAR(50) ,
KSDL VARCHAR(100000) , −− Serv i ce d e s c r i p t i on in Knowledge Serv i ce

Descr ip t ion language
KSDLVERSION VARCHAR(30) ,
KSDLDATE DATE −− Date o f t h i s ver s ion o f the KSD

−− WSDL VARCHAR(10000) , −− Serv i ce d e s c r i p t i on in Web Serv i ce Descr ip t ion
Language

−− WSDLVERSION VARCHAR(30) , −− Version o f the f i l e , not the WSDL vers ion i t s e l f !
−− WSDLDATE DATE −− Date o f t h i s ver s ion o f teh WSD
) ;

CREATE TABLE SERVICES COMMUNITIES

Appendix B. Details for experiment execution 299

(
SERVICEID VARCHAR(100) REFERENCES SERVICES(ID) ,
COMMUNITYID VARCHAR(100) REFERENCES COMMUNITIES(ID)

) ;

CREATE TABLE SERVICES MEMBERS
(

SERVICEID VARCHAR(100) REFERENCES SERVICES(ID) ,
MEMBERID VARCHAR(100) REFERENCES MEMBERS(ID)

) ;

CREATE TABLE SERVICES AUTHORITIES
(

SERVICEID VARCHAR(100) REFERENCES SERVICES(ID) ,
MEMBERID VARCHAR(100) REFERENCES MEMBERS(ID)

) ;

−−
−− 6 th Sect ion
−− Tables f o r rou t ing
−−
CREATE TABLE ROUTINGTABLE
(

ID VARCHAR(100) PRIMARY KEY,
SOURCECOMMUNITY VARCHAR(100) REFERENCES COMMUNITIES(ID) ,
DESTINATION COMMUNITY VARCHAR(100) REFERENCES COMMUNITIES(ID) ,
GATEWAYMEMBER ID VARCHAR(100) REFERENCES MEMBERS(ID) ,
GATEWAY COMMUNITY ID VARCHAR(100) REFERENCES COMMUNITIES(ID) ,
COSTS INT

) ;
§ ¦

Table B.8.: Specifications for laboratory environment B

Grid01 Grid02 Grid03
Hardware P3 800 MHz P3 733 MHz P3 733 MHz

256 MB 256 MB 256 MB
OS Debian Sarge 3.1 Debian Sarge 3.1 Debian Sarge 3.1

2.4.27-2 2.4.27-2 2.4.27-2
Networking 192.168.1.1/24 192.168.1.2/24 192.168.1.3/24
Hostname grid01 grid02 grid03
Python 2.4.2 2.3.5 2.3.5
Modules
pygresql 3.6.1-1 3.6.1-1 3.6.1-1
pyXML 0.8.4-1 0.8.4-1 0.8.4-1
SSLCrypto 0.1.1 0.1.1 0.1.1
SOAPpy 0.11.3-1 0.11.3-1 0.11.3-1
fpconst 0.7.2 0.7.2 0.7.2
pycrypto 2.0.1 2.0.1 2.0.1
ezPyCrypto 0.1.1 0.1.1 0.1.1
PostgreSQL 7.4.7-6 7.4.7-6 7.4.7-6

Appendix B. Details for experiment execution 300

Listing B.14: Installation instructions for G4DS
¨ ¥
INSTALLATION of G4DS

Grid f o r D i g i t a l S e cu r i t y
Michael Pilgermann
mpilgerm@glam . ac . uk

Content
−−−−−−−
− Requirements
− Before i n s t a l l a t i o n
− Unpacking
− Di s t r i bu t i on
− Conf igurat ion
− Star t & Stop
− Un in s t a l l

Requirements
−−−−−−−−−−−−
∗ Python I n s t a l l a t i o n (http ://www. python . org)
∗ PostGreSQL Database (http ://www. po s t g r e s q l . org /)
∗ python s i t e package ’ pygre sq l ’ f o r connect ing aga in s t the database (http ://www.

pygre sq l . org /)
∗ python s i t e package ’PyXML’ (http :// pyxml . s ou r c e f o r g e . net /)
∗ python s i t e package ’ cElementTree ’ (http :// e f f b o t . org /zone/ ce l ement t r e e . htm)
∗ python s i t e package ’ SSLCrypto ’ (http ://www. f r e e n e t . org . nz/python/SSLCrypto /)

− depending on an opens s l i n s t a l l a t i o n (source / headers)
∗ f o r SOAP pro to co l implementation

− s i t e package ’SOAPpy ’ (http :// pywebsvcs . s ou r c e f o r g e . net /)
− s i t e package ’ fpcons t ’ (http :// r e s ea r ch . warnes . net :9090/˜ warnes/ fpcons t /)

∗ f o r encrypt ion a lgor i thms
− s i t e package ’ pycrypto ’ − RSA, ElGamal (http ://www.amk . ca/python/code/ crypto .

html)
There i s a c o n f l i c t between s e v e r a l v e r s i on s o f PyCrypto . Make sure you are

running
the same ve r s i on on a l l nodes . Current Vers ion here : pycrypto−2.0− r1
Furthermore , make sure you i n s t a l l the f u l l PyCrypto ve r s i on (otherwise ,

ezPyCrypto w i l l
f a i l to load) − some d i s t r i b u t i o n s (such as Ubuntu) do not prov ide a l l

a lgor i thms by default and
you have to download and i n s t a l l manually .

− s i t e package ’ ezPyCrypto ’ − RSA, ElGamal (http ://www. f r e e n e t . org . nz/ezPyCrypto /)
∗ Gentoo ‘ s python module output . py (f o r co l o r ed conso l e output)

− i f you are not running gentoo , copy the f i l e ’ output . py ’ from the sub d i r e c t o r y
’ g4ds/ th r idpar ty ’ into the main f o l d e r ’ g4ds ’

Before i n s t a l l a t i o n
−−−−−−−−−−−−−−−−−−−
∗ The database has to be prepared (see a l s o he lp f i l e DBHOWTO fo r more d e t a i l s)

− create a user (default name ’ ug4ds ’ / default password ’ pwg4ds ’)
− create a database (default name ’ g4ds ’)
− create the r equ i r ed t ab l e s in the database using the provided s c r i p t ’ s q l /

c r e a t e t a b l e s . s q l ’

Unpacking
−−−−−−−−−
∗ Unpack the a rch ive to a l o c a t i o n o f your cho i c e

D i s t r i bu t i on
−−−−−−−−−−−−
The f o l l ow i ng s t ep s have to be performed with root p r i v e l e g e s !

Appendix B. Details for experiment execution 301

su − (password)

∗ I n s t a l l G4DS as a python s i t e package
− run the setup module in the g4ds d i r e c t o r y with opt ion i n s t a l l :

python setup . py i n s t a l l
∗ Check permi s s i on s on the f i l e s

− i n i t s c r i p t ”/ e t c / i n i t . d/ g4dsrc ” should be executab l e f o r ” root ”
chmod u+x / etc / i n i t . d/ g4dsrc

− g4ds l i s t e n e r module ”/ usr / sb in / g 4 d s l i s t e n e r . py” should be executab l e f o r ” root ”
chmod u+x /usr / sb in / g 4 d s l i s t e n e r . py

∗ Want to s t a r t G4DS backend at bootup time?
− For most Linux d i s t r i b u t i o n s : Link from your d i r e c t o r y o f the default boot level

to the g4dsrc s c r i p t :
ln −s / e t c / i n i t . d/ g4dsrc / e t c / rc . d/ rc3 . d/99 g4dsrc (assuming , 3 i s your

default run level)
− For Gentoo Linux

rc−update add g4dsrc default
− For Debian Linux

update−rc . d g4dsrc d e f a u l t s

Conf igurat ion
−−−−−−−−−−−−−
∗ Edit the c on f i g u r a t i on f i l e g4ds . conf in the systems s e t t i n g s f o l d e r ”/ e t c ”

− apply your s e t t i n g s f o r your o r gan i s a t i on at the top o f the f i l e (name ,
o rgan i sa t i on , . . .) − w i l l be part o f your member d e s c r i p t i o n

− apply your s e t t i n g s f o r the database host and port
− i f you did not use default user / password / database ; apply the s e t t i n g s here

∗ In the same f i l e f u r t h e r down , ed i t the c on f i g u r a t i on f i l e f o r p r o t o c o l s
− check the s e t t i n g s f o r the pro toco l s , e s p e c i a l l y the local IP address and por t s

∗ Run the i n s t a l l module ’ i n s t a l l . py ’ from the g4ds d i r e c t o r y
− This prepares your local node f o r G4DS by d i s t r i b u t i n g the knowledge o f the

c on f i g f i l e s to the managers and database

Star t & Stop
−−−−−−−−−−−−
∗ Sta r t i ng G4DS

/ etc / i n i t . d/ g4dsrc s t a r t
∗ Stopping G4DS

/ etc / i n i t . d/ g4dsrc stop

Un in s t a l l
−−−−−−−−−
∗ Run the s q l s c r i p t f o r d e l e t i n g a l l the t ab l e s ’ s q l / droptab l e s . s q l ’
∗ Delete the g4ds d i r e c t o r y with a l l s u bd i r e c t o r i e s
∗ Delete the f i l e ”/ e t c / i n i t . d/ g4dsrc ” (and po s s i b l e l i n k s to i t in your r un l e v e l

d i r e c t o r i e s)
∗ Delete the g4ds l i s t e n e r module ” g 4 d s l i s t e n e r . py” from the d i r e c t o r y ”/ usr / sb in ”
∗ Delete the s i t e package g4ds from your local python i n s t a l l a t i o n
(so r ry f o r not prov id ing something more handy here yet)

§ ¦

Appendix B. Details for experiment execution 302

Listing B.15: Output for G4DS Installation on M004¨ ¥
I n s t a l l a t i o n s t a r t ed

Check f o r a v a i l a b i l i t y o f r equ i r ed modules
output − co l o r ed conso l e output [OK]
pygre sq l − po s t g r e s q l database connector [OK]
PyXML − xml p ro c e s s i ng l i b r a r i e s [OK]
fpcons t − r equ i r ed module f o r soap [OK]
SOAPpy − SOAP implementation [OK]
pycrypto − Low level cryptography t o o l k i t [OK]
ezPyCrypto − High level cryptography api [OK]

Fin i shed check ing o f modules [OK]
Conf igurat ion f i l e : / e t c /g4ds . conf [OK]

I n i t i a l i s e member database with myse l f as the only member
Create new member [OK]
Add member to local manager [OK]

New member (M004) f i n i s h e d . [OK]
I n i t i a l i s e community database with one i n i t i a l entry

I n i t i a l i s e temporary e n t r i e s f o r back r e f e r e n c i n g
Adding temporare member ’M001 ’ (author i ty) to system and community . [OK]
Adding temporare member ’M002 ’ (author i ty) to system and community . [OK]

Members temporaly added . [OK]
Prepar ing new Community ’ Defau l t Community ’

Adding member ’M001 ’ (author i ty) to system and community . [OK]
Adding member ’M002 ’ (author i ty) to system and community . [OK]

Community prepared . [OK]
Apply community d e s c r i p t i o n and add members [OK]

Add local member to the community [OK]
Finshed new Community ’ Defau l t Community ’ [OK]

Fin i shed community database [OK]
I n i t i a l i s e a lgor i thms

Algorithm ’ elgamal ’ [OK]
Algorithm ’ r sa ’ [OK]

Fin i shed a lgor i thms [OK]
I n i t i a l i s e c r e d e n t i a l s f o r a lgor i thms

Persona l Credent i a l f o r a lgor i thm ’ elgamal ’ [OK]
Publ ic Credent i a l f o r a lgor i thm ’ elgamal ’ [OK]
Persona l Credent i a l f o r a lgor i thm ’ r sa ’ [OK]
Publ ic Credent i a l f o r a lgor i thm ’ r sa ’ [OK]

Fin i shed c r e d e n t i a l s [OK]
I n i t i a l i s e p r o t o c o l s and t h e i r endpoints

Add Protoco l ’ t cpsocke t ’ [OK]
Add Endpoints f o r p ro to co l ’ t cpsocke t ’

Add Endpoint f o r p ro to co l ’ t cpsocke t ’ and Algorithm ’ elgamal ’ [OK]
Add Endpoint f o r p ro to co l ’ t cpsocke t ’ and Algorithm ’ r sa ’ [OK]

Add Protoco l ’ soap ’ [OK]
Add Endpoints f o r p ro to co l ’ soap ’

Add Endpoint f o r p ro to co l ’ soap ’ and Algorithm ’ elgamal ’ [OK]
Add Endpoint f o r p ro to co l ’ soap ’ and Algorithm ’ r sa ’ [OK]

Fin i shed p r o t o c o l s and endpoints [OK]
Generate and s t o r e member d e s c r i p t i o n f o r the local node [OK]

I n s t a l l a t i o n f i n i s h e d [OK]
§ ¦

Appendix B. Details for experiment execution 303

Listing B.16: Community Description for C001
¨ ¥
<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<tcd l>

<id>C001</id>
<vers ion >1.0.0.0 </ vers ion>
<name>g4ds 01 </name>
<c rea t i ondate >2006−05−16</c rea t i ondate >

<de s c r i p t i on >
<ful lname>G4DS Evaluat ion − community 01</ ful lname>
<organ i sa t i on >Unive r s i ty o f Glamorgan</organ i sa t i on >
<l o ca t i on >

<country>
<code>UK</code>
<name>United Kingdom</name>

</country>
<c i ty >Card i f f </c i ty >

</l o ca t i on >
</de s c r i p t i on >

<communication>
<pro toco l s >

<protoco l>
<name>soap</name>
<comment>SOAP, as implemented f o r G4DS. Server must l i s t e n to incoming

messages on f unc t i on ’ newMessage ’</comment>
</protoco l>
<protoco l>

<name>tcpsocket </name>
<comment>Simple communication over TCP socke t s as implemented in G4DS

/ p r o t c o l s f o r TCP sockets </comment>
</protoco l>

</pro toco l s >
<algor i thms>

<algor ithm>
<name>rsa </name>
<comment>RSA, as implemented in G4DS / algor i thms </comment>

</algor ithm>
<algor ithm>

<name>elgamal </name>
<comment>ElGamal , as implemented in G4DS / algor i thms </comment>

</algor ithm>
</algor i thms>

</communication>

<au tho r i t i e s >
<author i ty>

<memberid>M001</memberid>
<endpoint>

<protoco l>soap</protoco l>
<address>http ://193 .63 .129 .184 :8080 </ address>
<c r ed en t i a l >

<algor ithm>rsa </algor ithm>
<publ ickey>

< ! [CDATA[3 c [. . .] 0a]] >
</publ ickey>

</c r ed en t i a l >
</endpoint>

</author i ty>
<author i ty>

<memberid>M002</memberid>

Appendix B. Details for experiment execution 304

<endpoint>
<protoco l>soap</protoco l>
<address>http ://193 .63 .148 .149 :8080 </ address>
<c r ed en t i a l >

<algor ithm>rsa </algor ithm>
<publ ickey>

< ! [CDATA[3 c [. . .] 0a]] >
</publ ickey>

</c r ed en t i a l >
</endpoint>

</author i ty>
</au tho r i t i e s >

<rout ing>
<gateways>

<incoming>
<gateway>

<memberid>M001</memberid>
<source>

<communityid>C002</communityid>
</source>

</gateway>
</incoming>
<outgoing>

<gateway>
<memberid>M001</memberid>
<de s t i na t i on >

<communityid>C002</communityid>
</de s t i na t i on >

</gateway>
</outgoing>

</gateways>
</rout ing>

</tcd l>
§ ¦

Appendix B. Details for experiment execution 305

Listing B.17: Python program for chat test service
¨ ¥
”””
Simple Test Se rv i c e f o r G4DS

Grid f o r D i g i t a l S e cu r i t y (G4DS)

Al l i t does i s wa i t ing f o r user input and sending i t to the reques ted d e s t i n a t i on
member .

@author : Michael Pilgermann
@contact : mai l to : mpilgerm@glam . ac . uk
@l i c ense : GPL (General Publ ic L i cense)
”””

import g4ds . g 4d s s e r v i c e
from g4ds . e r r o rhand l i ng import G4dsException

class TestSe rv i c e :
”””
Class , which ho lds the ca l l ba ck f o r incoming messages and the f unc t i on s user input

f o r p ro c e s s i ng
messages to be passed on to the g4ds system .
”””

def i n i t (s e l f , s e r v i c e i d = ’ S123456 ’) :
”””
Connects aga in s t G4ds backend .
”””
s e l f . g s = g4ds . g 4d s s e r v i c e . G4dsService ()
try :

s e l f . g s . connect (s e r v i c e i d , None , ’ key ’ , c a l l b a ck = s e l f . c a l l b a ck)
s e l f . user Input ()

except G4dsException , msg :
print ”Could not connect aga in s t G4DS: %s” %msg

def ca l l b a ck (s e l f , msg , metadata) :
”””
Cal lback f o r incoming messages from g4ds .

Just p r i n t s the msg to std out .
”””
from g4ds . g 4d s s e r v i c e import METADATA SENDERID
import time
print ”\n\ tRece ived (%s @%s) : %s ” %(metadata [METADATA SENDERID] , time . s t r f t im e

(’%x−%X’) , msg)
pr in t ”\ t I n f o : %s” %(metadata)

def user Input (s e l f) :
”””
Request user input and send i t over .
”””

while 1 :
msg = raw input (’ Message (q to qu i t) : ’)
i f msg == ’q ’ :

s e l f . g s . d i s connec t ()
break

r e c e i v e r = raw input (’Member ID o f r e c e i v e r : ’)
try :

s e l f . g s . sendMessage (r e c e i v e r , None , msg , a c t i o n s t r i n g=’ chat . send .

Appendix B. Details for experiment execution 306

message ’)
except G4dsException , msg :

print ”\nSomething went wrong here − e r r o r message from G4DS: %s”

i f name == ” main ” :
import sys # t h i s way you can s p e c i f y a s e r v i c e id on the prompt − t e s t i n g

s e v e r a l s e r v i c e s
i f l en (sys . argv) > 1 :

t s = Tes tSe rv i c e (sys . argv [1])
else :

t s = Tes tSe rv i c e ()
§ ¦

Appendix B. Details for experiment execution 307

Listing B.18: Service Description for Test-Chat service¨ ¥
<?xml ve r s i on=’ 1 .0 ’ encoding=’UTF−8 ’?>
<ksdl>

<id>S123456</id>
<vers ion >1.0.0.0 </ vers ion>
<name>Simple g4ds t e s t − chat t ing s e rv i c e </name>
<c rea t i ondate >2006−05−16</c rea t i ondate >
<l a s tupdate >2006−05−16</ lastupdate>

<de s c r i p t i on >
<ful lname>G4DS t e s t s e r v i c e − s imple chat program</ful lname>
<contacts>

<contact>
<name>Michael Pilgermann</name>
<organ i sa t i on >Unive r s i ty o f Glamorgan / Informat ion Secury Research

Group</organ i sa t i on >
<email>mpilgerm@glam . ac . uk</email>

</contact>
</contacts>

</de s c r i p t i on >

<communication>
<communities>

<community>
<id>C001</id>

</community>
<community>

<id>C002</id>
</community>
<community>

<id>C003</id>
</community>

</communities>

<messageformats>
<messageformat>

<id>S123456 fu l l t ex t </id>
<name>Chatting f u l l t ex t messages</name>
<d e f i n i t i o n />

</messageformat>
</messageformats>

</communication>

<au tho r i t i e s >
<author i ty>

<memberid>M001</memberid>
</author i ty>
<author i ty>

<memberid>M002</memberid>
</author i ty>

</au tho r i t i e s >
</ksdl>

§ ¦

Appendix B. Details for experiment execution 308

Listing B.19: G4DS logging outupt on node M001 for experiment stage 1 step 001b
¨ ¥
2006−05−18 10 : 59 : 02 000 G4DS Logging s t a r t ed (l e v e l 5)
2006−05−18 10 : 59 : 04 799 Routing Table updater i n t i a l i s e d
2006−05−18 10 : 59 : 07 998 C l i en t connected for s e r v i c e S123456 .
2006−05−18 10 : 59 : 58 199 New incoming message
2006−05−18 10 : 59 : 59 198 −− MSG ID Z261767 | SENDER M002
2006−05−18 10 : 59 : 59 198 −− S i z e o f msg (brutto | netto) : 6260 | 525 Bytes
2006−05−18 10 : 59 : 59 198 −− Se rv i c e Msg − Se rv i c e t e s t s e r v i c e (S123456)
2006−05−18 10 : 59 : 59 698 Access Control − message passed : M002 −> S123456 (A: g4ds .

s e r v i c e . S123456)
2006−05−18 10 : 59 : 59 698 Access Control − message passed : M002 −> S123456 (A: chat . send

. message)
2006−05−18 11 : 00 : 00 198 −− Se rv i c e Msg − passed message to connected c l i e n t .
2006−05−18 11 : 00 : 12 199 New incoming message
2006−05−18 11 : 00 : 13 198 −− MSG ID Z293157 | SENDER M002
2006−05−18 11 : 00 : 13 198 −− S i z e o f msg (brutto | netto) : 26556 | 7162 Bytes
2006−05−18 11 : 00 : 13 198 −− Control Msg − SS : Routing Engine
2006−05−18 11 : 00 : 13 698 Access Control − message passed : M001 −> C002 (A: g4ds . rout ing

. route)
2006−05−18 11 : 00 : 13 298 Sending con t r o l message
2006−05−18 11 : 00 : 14 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)
2006−05−18 11 : 00 : 14 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :

http : / / 1 9 3 . 6 3 . 1 2 9 . 1 9 3 : 8 0 8 0 .
2006−05−18 11 : 00 : 14 296 −− S i z e o f Data 26716 chars
2006−05−18 11 : 00 : 30 199 New incoming message
2006−05−18 11 : 00 : 30 198 −− MSG ID Z680649 | SENDER M002
2006−05−18 11 : 00 : 30 198 −− S i z e o f msg (brutto | netto) : 32710 | 9090 Bytes
2006−05−18 11 : 00 : 30 198 −− Control Msg − SS : Routing Engine
2006−05−18 11 : 00 : 30 698 Access Control − message passed : M001 −> C002 (A: g4ds . rout ing

. route)
2006−05−18 11 : 00 : 30 298 Sending con t r o l message
2006−05−18 11 : 00 : 31 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)
2006−05−18 11 : 00 : 31 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :

http : / / 1 9 3 . 6 3 . 1 2 9 . 1 9 3 : 8 0 8 0 .
2006−05−18 11 : 00 : 31 296 −− S i z e o f Data 32894 chars
2006−05−18 11 : 00 : 48 199 New incoming message
2006−05−18 11 : 00 : 49 198 −− MSG ID Z588422 | SENDER M002
2006−05−18 11 : 00 : 49 198 −− S i z e o f msg (brutto | netto) : 6272 | 533 Bytes
2006−05−18 11 : 00 : 49 198 −− Se rv i c e Msg − Se rv i c e t e s t s e r v i c e (S123456)
2006−05−18 11 : 00 : 49 698 Access Control − message passed : M002 −> S123456 (A: g4ds .

s e r v i c e . S123456)
2006−05−18 11 : 00 : 49 698 Access Control − message passed : M002 −> S123456 (A: chat . send

. message)
2006−05−18 11 : 00 : 51 198 −− Se rv i c e Msg − passed message to connected c l i e n t .
2006−05−18 11 : 01 : 16 199 New incoming message
2006−05−18 11 : 01 : 16 199 New incoming message
2006−05−18 11 : 01 : 17 198 −− MSG ID Z757657 | SENDER M002
2006−05−18 11 : 01 : 17 198 −− S i z e o f msg (brutto | netto) : 26660 | 7196 Bytes
2006−05−18 11 : 01 : 17 198 −− Control Msg − SS : Routing Engine
2006−05−18 11 : 01 : 17 198 −− MSG ID Z19840 | SENDER M002
2006−05−18 11 : 01 : 17 198 −− S i z e o f msg (brutto | netto) : 6282 | 527 Bytes
2006−05−18 11 : 01 : 17 198 −− Se rv i c e Msg − Se rv i c e t e s t s e r v i c e (S123456)
2006−05−18 11 : 01 : 17 698 Access Control − message passed : M002 −> S123456 (A: g4ds .

s e r v i c e . S123456)
2006−05−18 11 : 01 : 17 698 Access Control − message passed : M002 −> S123456 (A: chat . send

. message)
2006−05−18 11 : 01 : 18 698 Access Control − message passed : M001 −> C002 (A: g4ds . rout ing

. route)
2006−05−18 11 : 01 : 18 298 Sending con t r o l message
2006−05−18 11 : 01 : 18 198 −− Se rv i c e Msg − passed message to connected c l i e n t .
2006−05−18 11 : 01 : 18 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)

Appendix B. Details for experiment execution 309

2006−05−18 11 : 01 : 18 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :
http : / / 1 9 3 . 6 3 . 1 2 9 . 1 9 3 : 8 0 8 0 .

2006−05−18 11 : 01 : 18 296 −− S i z e o f Data 26822 chars
2006−05−18 11 : 01 : 49 199 New incoming message
2006−05−18 11 : 01 : 50 199 New incoming message
2006−05−18 11 : 01 : 50 199 New incoming message
2006−05−18 11 : 01 : 50 199 New incoming message
2006−05−18 11 : 01 : 51 198 −− MSG ID Z778370 | SENDER M002
2006−05−18 11 : 01 : 51 198 −− S i z e o f msg (brutto | netto) : 26822 | 7214 Bytes
2006−05−18 11 : 01 : 51 198 −− Control Msg − SS : Routing Engine
2006−05−18 11 : 01 : 51 698 Access Control − message passed : M001 −> C002 (A: g4ds . rout ing

. route)
2006−05−18 11 : 01 : 51 298 Sending con t r o l message
2006−05−18 11 : 01 : 52 198 −− MSG ID Z128199 | SENDER M002
2006−05−18 11 : 01 : 52 198 −− S i z e o f msg (brutto | netto) : 32638 | 9168 Bytes
2006−05−18 11 : 01 : 52 198 −− MSG ID Z787291 | SENDER M002
2006−05−18 11 : 01 : 52 198 −− S i z e o f msg (brutto | netto) : 32724 | 9138 Bytes
2006−05−18 11 : 01 : 52 198 −− Control Msg − SS : Routing Engine
2006−05−18 11 : 01 : 52 198 −− Control Msg − SS : Routing Engine
2006−05−18 11 : 01 : 52 698 Access Control − message passed : M001 −> C002 (A: g4ds . rout ing

. route)
2006−05−18 11 : 01 : 52 298 Sending con t r o l message
2006−05−18 11 : 01 : 53 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)
2006−05−18 11 : 01 : 53 698 Access Control − message passed : M001 −> C002 (A: g4ds . rout ing

. route)
2006−05−18 11 : 01 : 53 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :

http : / / 1 9 3 . 6 3 . 1 2 9 . 1 9 3 : 8 0 8 0 .
2006−05−18 11 : 01 : 53 298 Sending con t r o l message
2006−05−18 11 : 01 : 53 296 −− S i z e o f Data 26938 chars
2006−05−18 11 : 01 : 53 198 −− MSG ID Z848583 | SENDER M002
2006−05−18 11 : 01 : 53 198 −− S i z e o f msg (brutto | netto) : 32654 | 9136 Bytes
2006−05−18 11 : 01 : 53 198 −− Control Msg − SS : Routing Engine
2006−05−18 11 : 01 : 53 698 Access Control − message passed : M001 −> C002 (A: g4ds . rout ing

. route)
2006−05−18 11 : 01 : 53 298 Sending con t r o l message
2006−05−18 11 : 01 : 53 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)
2006−05−18 11 : 01 : 53 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :

http : / / 1 9 3 . 6 3 . 1 2 9 . 1 9 3 : 8 0 8 0 .
2006−05−18 11 : 01 : 53 296 −− S i z e o f Data 32802 chars
2006−05−18 11 : 01 : 54 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)
2006−05−18 11 : 01 : 54 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :

http : / / 1 9 3 . 6 3 . 1 2 9 . 1 9 3 : 8 0 8 0 .
2006−05−18 11 : 01 : 54 296 −− S i z e o f Data 32910 chars
2006−05−18 11 : 01 : 54 299 New outgoing message − d i r e c t d e l i v e r y (M003 | C002)
2006−05−18 11 : 01 : 54 296 −− Endpoint Endpoint (E866658) : MemberID i s M003 . Address :

http : / / 1 9 3 . 6 3 . 1 2 9 . 1 9 3 : 8 0 8 0 .
2006−05−18 11 : 01 : 54 296 −− S i z e o f Data 32854 chars
2006−05−18 11 : 02 : 10 997 C l i en t d i s connected for s e r v i c e S123456 .
2006−05−18 11 : 02 : 51 799 Routing Table updater i s shutdown
2006−05−18 11 : 02 : 51 000 G4DS Logging shut down

§ ¦

Appendix B. Details for experiment execution 310

Listing B.20: Python program for changing member id inside message
¨ ¥
Python program to change the sender ID of a g4ds message
#
− p r i v a t e key must be presen t in the l o c a l database (parameters hard coded)
− i d o f t h i s key has to be prov ided on the s h e l l
#
Michael Pilgermann (mpilgerm@glam . ac . uk)
22/05/2006
#

def getKey (keyid) :
print ”Receive key from database . . . ”
import pg
connect ion = pg . connect (’ g4ds ’ , ’ j4− i t r l −12 ’ , 5432 , None , None , ’ ug4ds ’ , ’

pwg4ds ’)

query = ””” s e l e c t id , name , key pr ivate , k ey pub l i c from pe r s o n a l c r e d e n t i a l s
where id = ’ ””” + keyid + ””” ’ ””” ;

##pr in t query
r e s u l t = connect ion . query (query)

l i s t = r e s u l t . g e t r e s u l t ()
i f not l en (l i s t) :

print ”No key found with given ID”
return None , None

for item in l i s t :
id = item [0]
name = item [1]
key = item [2]
key pub = item [3]

print ” Found key with name <%s>” %(name)
return key , key pub

def getContent (s r c f i l e n ame) :
”””
Actua l ly we should parse the XML proper ly here − but too much ha s s l e s ; l e t ’ s

j u s t look f o r the CDATA se c t i o n . . .
”””
print ”Open f i l e and ex t r a c t in fo rmat ion . . . ”
s t = ” < ! [CDATA[”
f i l e = open (s r c f i l ename , ’ r ’)
content = f i l e . read ()
f i l e . c l o s e ()
s t a r tpo s = content . index (s t)+9
endpos = content . index (’]] > ’ , s t a r tpo s)
hexdata = content [s t a r tpo s : endpos]
print ” Found data . Let ’ s convert and unpack . . . ”
import b i n a s c i i as hex
zipped = hex . unhex l i f y (hexdata)
import z l i b
unzipped = z l i b . decompress (z ipped)
print ” OK”
return unzipped

def decrypt (content , key) :
print ”Time to decrypt . . . ”
import ezPyCrypto
key = ezPyCrypto . key (key)
p l a i n = key . decStr ingFromAsci i (content)

Appendix B. Details for experiment execution 311

print ” Done”
return p l a in

def replaceMemberId (content , o ldId , newId) :
print ”Replac ing member id . . . ”
pos = content . index (”<sender id>” + oldId + ”</sender id>”)
s t = content [: pos]
s t +=”<sender id>” + newId + ”</sender id>”
s t += content [pos + len (”<sender id>” + oldId + ”</sender id>”) :]
print ” Done”
return s t

def encrypt (content , key pub) :
print ”Encrypt again with r e c e i v e r ’ s pub l i c key . . . ”
import ezPyCrypto
key = ezPyCrypto . key ()
key . importKey (key pub)
c iphe r = key . encStr ingToAsc i i (content)
print ” Done”
return c iphe r

def packandwrite (content , srcFileName , dstFileName) :
print ”Time to wrap i t in a g4ds message . . . ”
import z l i b
z ipped = z l i b . compress (content)
import b i n a s c i i as hex
hexed = hex . h e x l i f y (z ipped)

s t = ” < ! [CDATA[”
f i l e = open (srcFileName , ’ r ’)
f i l e c o n t e n t = f i l e . read ()
f i l e . c l o s e ()
s t a r tpo s = f i l e c o n t e n t . index (s t)+9
endpos = f i l e c o n t e n t . index (’]] > ’ , s t a r tpo s)

o u t f i l e = open (dstFileName , ’w ’)
o u t f i l e . wr i t e (f i l e c o n t e n t [: s t a r tpo s])
o u t f i l e . wr i t e (hexed)
o u t f i l e . wr i t e (f i l e c o n t e n t [endpos :])
o u t f i l e . c l o s e ()
print ” OK”
return

import sys
i f l en (sys . argv) != 6 :

print ”You have to prov ide the ID o f the p r i va t e key to decrypt the message ,
the name o f the f i l e conta in ing the message , the o r i g i n a l and the fake
member id and the d e s t i n a t i on f i l ename ! ”

print ”\ tUsage : %s $KEYID $SRC FILENAME $REAL MEMBERID $FAKE MEMBERID
$DEST FILENAME” %(sys . argv [0])

sys . e x i t (1)
key , key pub = getKey (sys . argv [1])
i f not key :

print ”No key found with the g iven ID . Sorry − I qu i t ”
sys . e x i t (1)

content = getContent (sys . argv [2])
p l a i n = decrypt (content , key)

newPlain = replaceMemberId (p la in , sys . argv [3] , sys . argv [4])
i f not newPlain :

sys . e x i t (1)

Appendix B. Details for experiment execution 312

c iphe r = encrypt (newPlain , key pub)

packandwrite (c ipher , sys . argv [2] , sys . argv [5])
§ ¦

Appendix B. Details for experiment execution 313

B.3. More IOIDS resources

Appendix B. Details for experiment execution 314

Listing B.21: Installation instructions for IOIDS

¨ ¥
INSTALLATION of IOIDS

Inter−Organ i sa t i ona l I n t ru s i on Detect ion System (IOIDS)
Michael Pilgermann
mpilgerm@glam . ac . uk

Content
−−−−−−−
− Requirements
− I n s t a l l a t i o n & Conf igurat ion
− Star t
− Un in s t a l l

Requirements
−−−−−−−−−−−−
− Postgres Database (t e s t ed on ve r s i on 8)
− Python 2.3+
− G4DS
− SoapSy
− PyXML
− SoapXML RPC by Konstantinos Xynos (kxynos@glam . ac . uk) (now coming with t h i s package)
− SoapSy Tools (download from j4− i t r l −12.comp . glam . ac . uk/g4ds#download)

I n s t a l l a t i o n & Conf igurat ion
−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1) G4DS prepa ra t i on s
− i n s t a l l g4ds f i r s t (from now we assume i t ’ s working)
− c r e a t e a p r i va t e key with g4ds , which we use l a t e r on f o r connect ing (au then t i c a t i ng

) aga in s t i t (maintain in g4ds)
∗ save the p r i va t e key at the l o c a t i o n s ta t ed in your i o i d s c on f i g f i l e

− make t h i s s e r v i c e known to g4ds
∗ run g4ds maintain and apply the s e r v i c e d e s c r i p t i o n (provided in the sub f o l d e r

d e s c r i p t i o n s) to the g4ds system

2) Unpack arch ive to l o c a t i o n o f your cho i c e
− change in to t h i s d i r e c t o r y

3) Database p r epa ra t i on s
− SoapXML RPC database connector i s now inc luded in the IOIDS package − i t i s

i n s t a l l e d automat ica l ly , ones you run the setup o f i o i d s (#4)
− Create an SQL s c r i p t us ing the provided XDS program

∗ run XDS python program and c r ea t e SQL s c r i p t t h i s way
python th i rdpar ty / soap db/ soap s e rv e r /XDS. py − i d e s r i p t i o n s /

IOIDS SoapSy DatabaseSchema . xml −o d e s c r i p t i o n s /
IOIDS SoapSy DatabaseSchema . s q l

− Change os user to po s tg r e s
∗ su − pos tg r e s

− Create user in database mangement system
∗ c r e a t eu s e r −P u i o i d s
<type password ’ pwio ids ’>

− Create database f o r i o i d s
∗ createdb −O u i o i d s i o i d s
∗ e x i t (l e ave user po s tg r e s)

− Run the provided SQL Sc r i p t and c r ea t e r e l a t i o n s in database
∗ psq l −U u i o i d s [−h l o c a l h o s t] i o i d s −f d e s c r i p t i o n s /IOIDS SoapSy DatabaseSchema .

s q l

4) I n s t a l l a t i o n

Appendix B. Details for experiment execution 315

− Di s t r i bu t e the f i l e s over the l o c a l f i l e s y s t em (s i t epackage s , c on f i g f i l e s and
programs) − as root
∗ su
∗ python setup . py i n s t a l l
∗ e x i t

− check and ad jus t pe rmi s s i ons f o r rc−s c r i p t and python s c r i p t
∗ chmod 755 / e tc / i n i t . d/xsmrc
∗ chmod 755 / usr /bin /XSM. py

− Make the IOIDS acc e s s c on t r o l p o l i c i e s known to the G4DS system
∗ copy po l i c y f i l e s (d e s c r i p t i o n s /∗ . po l) to G4DS po l i c y system f o l d e r (d e f au l t /

var / l i b /g4ds/ p o l i c i e s)
∗ r e g i s t e r f i l e s in g4ds c on f i g u r a t i on f i l e (d e f au l t / e t c /g4ds . conf − value

POLICY FILES)
∗ apply changes to cur rent g4ds p o l i c i e s f o r a c t i v a t i o n (see d e s c r i p t i o n s /

i o i d s g 4 d s p o l i c y . po l f o r d e t a i l s)

5) Conf igurat ion
− ed i t the g l oba l c on f i gu r a t i on f i l e (c on f i g . py)

∗ check everyth ing in the re and ad jus t to your needs
− ed i t the SoapXML RPC database c on f i g u r a t i on f i l e

∗ check s e t t i n g s in / e t c /XSM−c on f i g u r a t i on . xml

Star t
−−−−−
− s t a r t G4DS (as root)

/ e t c / i n i t . d/ g4dsrc s t a r t
− s t a r t SoapXML RPC database (as root)

/ e t c / i n i t . d/xsmrc s t a r t
− s t a r t i o i d s

python i o i d s . py

Un in s t a l l
−−−−−−−−−
coming soon

§ ¦

Appendix B. Details for experiment execution 316

B.4. Other figures and listings

Figure B.1.: Nessus configuration

Appendix B. Details for experiment execution 317

Figure B.2.: Nessus during execution

Figure B.3.: Nessus results

Appendix B. Details for experiment execution 318

Figure B.4.: Prelude analysis console PreWikka detailed event information

